BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18666265)

  • 1. Associative versus dissociative mechanisms of phosphate monoester hydrolysis: on the interpretation of activation entropies.
    Kamerlin SC; Florián J; Warshel A
    Chemphyschem; 2008 Aug; 9(12):1767-73. PubMed ID: 18666265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies on the hydrolysis of mono-phosphate and tri-phosphate in gas phase and aqueous solution.
    Wang YN; Topol IA; Collins JR; Burt SK
    J Am Chem Soc; 2003 Oct; 125(43):13265-73. PubMed ID: 14570503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer.
    Kamerlin SC
    J Org Chem; 2011 Nov; 76(22):9228-38. PubMed ID: 21981415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the interpretation of the observed linear free energy relationship in phosphate hydrolysis: a thorough computational study of phosphate diester hydrolysis in solution.
    Rosta E; Kamerlin SC; Warshel A
    Biochemistry; 2008 Mar; 47(12):3725-35. PubMed ID: 18307312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dineopentyl phosphate hydrolysis: evidence for stepwise water attack.
    Kamerlin SC; Williams NH; Warshel A
    J Org Chem; 2008 Sep; 73(18):6960-9. PubMed ID: 18729515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical evaluation of the substrate-assisted catalysis mechanism for the hydrolysis of phosphate monoester dianions.
    Iché-Tarrat N; Ruiz-Lopez M; Barthelat JC; Vigroux A
    Chemistry; 2007; 13(13):3617-29. PubMed ID: 17290469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of leaving group on mechanistic preference in phosphate monoester hydrolysis.
    Kamerlin SC; Wilkie J
    Org Biomol Chem; 2011 Aug; 9(15):5394-406. PubMed ID: 21655563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution.
    Ferreira DE; Florentino BP; Rocha WR; Nome F
    J Phys Chem B; 2009 Nov; 113(44):14831-6. PubMed ID: 19817372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of metal ions in phosphate ester hydrolysis.
    Kamerlin SC; Wilkie J
    Org Biomol Chem; 2007 Jul; 5(13):2098-108. PubMed ID: 17581653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical modeling of the reaction mechanism of phosphate monoester hydrolysis in alkaline phosphatase.
    López-Canut V; Martí S; Bertrán J; Moliner V; Tuñón I
    J Phys Chem B; 2009 Jun; 113(22):7816-24. PubMed ID: 19425583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic, and neutral systems.
    Lopez X; Dejaegere A; Leclerc F; York DM; Karplus M
    J Phys Chem B; 2006 Jun; 110(23):11525-39. PubMed ID: 16771429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of phosphate and phosphorothiolate diesters with nucleophiles: comparison of transition state structures.
    Ye JD; Barth CD; Anjaneyulu PS; Tuschl T; Piccirilli JA
    Org Biomol Chem; 2007 Aug; 5(15):2491-7. PubMed ID: 17637971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins.
    Klähn M; Rosta E; Warshel A
    J Am Chem Soc; 2006 Nov; 128(47):15310-23. PubMed ID: 17117884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkali metals (Li, Na, and K) in methyl phosphodiester hydrolysis.
    Pinjari RV; Kaptan SS; Gejji SP
    Phys Chem Chem Phys; 2009 Jul; 11(26):5253-62. PubMed ID: 19551192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state analogues for nucleotidyl transfer reactions: Structure and stability of pentavalent vanadate and phosphate ester dianions.
    Borden J; Crans DC; Florián J
    J Phys Chem B; 2006 Aug; 110(30):14988-99. PubMed ID: 16869614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of specific hydrogen-bonding effects on the bridging P-OR bond strength of phosphate monoester dianions.
    Iché-Tarrat N; Barthelat JC; Vigroux A
    J Phys Chem B; 2008 Mar; 112(10):3217-21. PubMed ID: 18275186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on the acidolysis of N-acyl-N,alpha,alpha-trialkyl glycine amides as related to the nature of substituents.
    Ventura C; Jiang WQ; Albuquerque L; Gonçalves-Maia R; Maia HL
    J Pept Sci; 2006 Mar; 12(3):239-42. PubMed ID: 16114105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.
    Chen SL; Liao RZ
    Chemphyschem; 2014 Aug; 15(11):2321-30. PubMed ID: 24683174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.
    Brandão TA; Orth ES; Rocha WR; Bortoluzzi AJ; Bunton CA; Nome F
    J Org Chem; 2007 May; 72(10):3800-7. PubMed ID: 17432909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.