These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18666684)

  • 1. Self-cleaning materials.
    Forbes P
    Sci Am; 2008 Aug; 299(2):88-95. PubMed ID: 18666684
    [No Abstract]   [Full Text] [Related]  

  • 2. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
    Koch K; Barthlott W
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1487-509. PubMed ID: 19324720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repellency of the lotus leaf: contact angles, drop retention, and sliding angles.
    Extrand CW; Moon SI
    Langmuir; 2014 Jul; 30(29):8791-7. PubMed ID: 25029189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces.
    Zhang X; Tan S; Zhao N; Guo X; Zhang X; Zhang Y; Xu J
    Chemphyschem; 2006 Oct; 7(10):2067-70. PubMed ID: 16941559
    [No Abstract]   [Full Text] [Related]  

  • 6. Evading the 'Lotus Effect'.
    Fountain DW
    Biologist (London); 2000 Nov; 47(5):265-8. PubMed ID: 11153136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How plants keep dry: a physicist's point of view.
    Otten A; Herminghaus S
    Langmuir; 2004 Mar; 20(6):2405-8. PubMed ID: 15835702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach.
    Balani K; Batista RG; Lahiri D; Agarwal A
    Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure.
    Zhu C; Yu X; Lv J; Zhang J; Yang J; Hao N; Feng J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53394-53402. PubMed ID: 33175502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles.
    Forsman N; Johansson LS; Koivula H; Tuure M; Kääriäinen P; Österberg M
    Carbohydr Polym; 2020 Jan; 227():115363. PubMed ID: 31590853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties.
    Qu M; Zhao G; Cao X; Zhang J
    Langmuir; 2008 Apr; 24(8):4185-9. PubMed ID: 18324852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructure on taro leaves resists fouling by colloids and bacteria under submerged conditions.
    Ma J; Sun Y; Gleichauf K; Lou J; Li Q
    Langmuir; 2011 Aug; 27(16):10035-40. PubMed ID: 21736298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From natural to biomimetic: The superhydrophobicity and the contact time.
    Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ
    Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.
    Burton Z; Bhushan B
    Ultramicroscopy; 2006; 106(8-9):709-19. PubMed ID: 16675115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peanut leaf inspired multifunctional surfaces.
    Yang S; Ju J; Qiu Y; He Y; Wang X; Dou S; Liu K; Jiang L
    Small; 2014 Jan; 10(2):294-9. PubMed ID: 23908145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinational Biomimicking of Lotus Leaf, Mussel, and Sandcastle Worm for Robust Superhydrophobic Surfaces with Biomedical Multifunctionality: Antithrombotic, Antibiofouling, and Tissue Closure Capabilities.
    Han K; Park TY; Yong K; Cha HJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9777-9785. PubMed ID: 30785265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.