BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18666954)

  • 1. Spatial and temporal quantitative analysis of cell division and elongation rate in growing wheat leaves under saline conditions.
    Hu Y; Schmidhalter U
    J Integr Plant Biol; 2008 Jan; 50(1):76-83. PubMed ID: 18666954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic analysis of leaf growth in grasses: a comment on Spatial and temporal quantitative analysis of cell division and elongation rate in growing wheat leaves under saline conditions.
    Schnyder H; Kavanova M; Nelson CJ
    J Integr Plant Biol; 2009 May; 51(5):433-6; discussion 437. PubMed ID: 19508354
    [No Abstract]   [Full Text] [Related]  

  • 3. Biophysical limitation of leaf cell elongation in source-reduced barley.
    Fricke W
    Planta; 2002 Jun; 215(2):327-38. PubMed ID: 12029483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity.
    Rodríguez AA; Córdoba AR; Ortega L; Taleisnik E
    J Exp Bot; 2004 Jun; 55(401):1383-90. PubMed ID: 15155779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal analysis of non-steady elongation of rice leaves.
    Parent B; Conejero G; Tardieu F
    Plant Cell Environ; 2009 Nov; 32(11):1561-72. PubMed ID: 19627567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The elongation rate at the base of a maize leaf shows an invariant pattern during both the steady-state elongation and the establishment of the elongation zone.
    Muller B; Reymond M; Tardieu F
    J Exp Bot; 2001 Jun; 52(359):1259-68. PubMed ID: 11432944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.
    Kavanová M; Lattanzi FA; Schnyder H
    Plant Cell Environ; 2008 Jun; 31(6):727-37. PubMed ID: 18208511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat.
    James RA; Munns R; von Caemmerer S; Trejo C; Miller C; Condon TA
    Plant Cell Environ; 2006 Dec; 29(12):2185-97. PubMed ID: 17081251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of salinity on tissue architecture in expanding wheat leaves.
    Hu Y; Fromm J; Schmidhalter U
    Planta; 2005 Apr; 220(6):838-48. PubMed ID: 15503127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves.
    Fricke W; Akhiyarova G; Veselov D; Kudoyarova G
    J Exp Bot; 2004 May; 55(399):1115-23. PubMed ID: 15047763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The short-term growth response to salt of the developing barley leaf.
    Fricke W; Akhiyarova G; Wei W; Alexandersson E; Miller A; Kjellbom PO; Richardson A; Wojciechowski T; Schreiber L; Veselov D; Kudoyarova G; Volkov V
    J Exp Bot; 2006; 57(5):1079-95. PubMed ID: 16513814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level.
    Pereyra-Irujo GA; Velázquez L; Lechner L; Aguirrezábal LA
    J Exp Bot; 2008; 59(8):2221-32. PubMed ID: 18448477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanisms of protective action of wheat germ agglutinin on cell growth in wheat seedling roots under salinity].
    Kil'dibekova AR; Bezrukova MV; Aval'baev AM; Fatkhutdinova RA; Shakirova FM
    Tsitologiia; 2004; 46(4):312-6. PubMed ID: 15346789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana.
    Hectors K; Jacques E; Prinsen E; Guisez Y; Verbelen JP; Jansen MA; Vissenberg K
    J Exp Bot; 2010 Oct; 61(15):4339-49. PubMed ID: 20702567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elongation growth in leaf blades of Chloris gayana under saline conditions.
    Ortega L; Taleisnik E
    J Plant Physiol; 2003 May; 160(5):517-22. PubMed ID: 12806780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation.
    de Souza IR; MacAdam JW
    J Exp Bot; 2001 Aug; 52(361):1673-82. PubMed ID: 11479332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity in sunflower leaf and cell growth under high salinity.
    Céccoli G; Bustos D; Ortega LI; Senn ME; Vegetti A; Taleisnik E
    Plant Biol (Stuttg); 2015 Jan; 17(1):41-51. PubMed ID: 24942979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+/K+ selectivity of leaf sheath in wheat cultivars differing in salt tolerance.
    Ding TL; Duan P; Wang BS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):123-6. PubMed ID: 16477141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal cell division and the coordination of leaf and tiller development.
    Skinner RH; Nelson CJ
    Ann Bot; 1994 Jul; 74(1):9-16. PubMed ID: 19700457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A screening method to identify genetic variation in root growth response to a salinity gradient.
    Rahnama A; Munns R; Poustini K; Watt M
    J Exp Bot; 2011 Jan; 62(1):69-77. PubMed ID: 21118825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.