BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1125 related articles for article (PubMed ID: 18666990)

  • 1. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits.
    El-Backly RM; Massoud AG; El-Badry AM; Sherif RA; Marei MK
    Aust Endod J; 2008 Aug; 34(2):52-67. PubMed ID: 18666990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells.
    Zheng L; Yang F; Shen H; Hu X; Mochizuki C; Sato M; Wang S; Zhang Y
    Biomaterials; 2011 Oct; 32(29):7053-9. PubMed ID: 21722953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells.
    Demarco FF; Casagrande L; Zhang Z; Dong Z; Tarquinio SB; Zeitlin BD; Shi S; Smith AJ; Nör JE
    J Endod; 2010 Nov; 36(11):1805-11. PubMed ID: 20951292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold.
    Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M
    Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cells and the dental pulp: potential roles in dentine regeneration and repair.
    Sloan AJ; Smith AJ
    Oral Dis; 2007 Mar; 13(2):151-7. PubMed ID: 17305615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental formation of dentin-like structure in the root canal implant model using cryopreserved swine dental pulp progenitor cells.
    Kodonas K; Gogos C; Papadimitriou S; Kouzi-Koliakou K; Tziafas D
    J Endod; 2012 Jul; 38(7):913-9. PubMed ID: 22703653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds.
    Xiong Y; Zeng YS; Zeng CG; Du BL; He LM; Quan DP; Zhang W; Wang JM; Wu JL; Li Y; Li J
    Biomaterials; 2009 Aug; 30(22):3711-22. PubMed ID: 19375792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The performance of human dental pulp stem cells on different three-dimensional scaffold materials.
    Zhang W; Walboomers XF; van Kuppevelt TH; Daamen WF; Bian Z; Jansen JA
    Biomaterials; 2006 Nov; 27(33):5658-68. PubMed ID: 16916542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assimilating cell sheets and hybrid scaffolds for dermal tissue engineering.
    Ng KW; Tham W; Lim TC; Werner Hutmacher D
    J Biomed Mater Res A; 2005 Nov; 75(2):425-38. PubMed ID: 16106437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold's surface geometry significantly affects human stem cell bone tissue engineering.
    Graziano A; d'Aquino R; Cusella-De Angelis MG; De Francesco F; Giordano A; Laino G; Piattelli A; Traini T; De Rosa A; Papaccio G
    J Cell Physiol; 2008 Jan; 214(1):166-72. PubMed ID: 17565721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration.
    Chen G; Chen J; Yang B; Li L; Luo X; Zhang X; Feng L; Jiang Z; Yu M; Guo W; Tian W
    Biomaterials; 2015 Jun; 52():56-70. PubMed ID: 25818413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffolds for dental pulp tissue engineering.
    Galler KM; D'Souza RN; Hartgerink JD; Schmalz G
    Adv Dent Res; 2011 Jul; 23(3):333-9. PubMed ID: 21677088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro].
    Pan H; Zheng Q; Guo X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):65-9. PubMed ID: 17305008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M
    Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo production of mineralised tissue pieces for clinical use: a qualitative pilot study using human dental pulp cell.
    Chan B; Wong RW; Rabie B
    Int J Oral Maxillofac Surg; 2011 Jun; 40(6):612-20. PubMed ID: 21353764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open macroporous poly(lactic-co-glycolic Acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; La WG; Kim BS
    J Biomater Sci Polym Ed; 2009; 20(3):399-409. PubMed ID: 19192363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.