BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18667070)

  • 1. Selective inhibition of yeast regulons by daunorubicin: a transcriptome-wide analysis.
    Rojas M; Casado M; Portugal J; Piña B
    BMC Genomics; 2008 Jul; 9():358. PubMed ID: 18667070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoter-specific inhibition of transcription by daunorubicin in Saccharomyces cerevisiae.
    Marín S; Mansilla S; García-Reyero N; Rojas M; Portugal J; Piña B
    Biochem J; 2002 Nov; 368(Pt 1):131-6. PubMed ID: 12164785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A specific transcriptional response of yeast cells to camptothecin dependent on the Swi4 and Mbp1 factors.
    Lotito L; Russo A; Bueno S; Chillemi G; Fogli MV; Capranico G
    Eur J Pharmacol; 2009 Jan; 603(1-3):29-36. PubMed ID: 19094980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.
    Bonander N; Ferndahl C; Mostad P; Wilks MD; Chang C; Showe L; Gustafsson L; Larsson C; Bill RM
    BMC Genomics; 2008 Jul; 9():365. PubMed ID: 18671860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions.
    Rodríguez-Quiñones JF; Irizarry RA; Díaz-Blanco NL; Rivera-Molina FE; Gómez-Garzón D; Rodríguez-Medina JR
    BMC Genomics; 2008 Jan; 9():34. PubMed ID: 18215314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central role of Ifh1p-Fhl1p interaction in the synthesis of yeast ribosomal proteins.
    Rudra D; Zhao Y; Warner JR
    EMBO J; 2005 Feb; 24(3):533-42. PubMed ID: 15692568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase CK2 in gene control at cell cycle entry.
    Pyerin W; Barz T; Ackermann K
    Mol Cell Biochem; 2005 Jun; 274(1-2):189-200. PubMed ID: 16335538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A.
    Bereketoglu C; Arga KY; Eraslan S; Mertoglu B
    Curr Genet; 2017 May; 63(2):253-274. PubMed ID: 27460658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae.
    Moehle CM; Hinnebusch AG
    Mol Cell Biol; 1991 May; 11(5):2723-35. PubMed ID: 2017175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.
    Jones DL; Petty J; Hoyle DC; Hayes A; Ragni E; Popolo L; Oliver SG; Stateva LI
    Physiol Genomics; 2003 Dec; 16(1):107-18. PubMed ID: 14570984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.
    Godard P; Urrestarazu A; Vissers S; Kontos K; Bontempi G; van Helden J; André B
    Mol Cell Biol; 2007 Apr; 27(8):3065-86. PubMed ID: 17308034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-dependent coordination of transcriptome and translatome in yeast.
    Halbeisen RE; Gerber AP
    PLoS Biol; 2009 May; 7(5):e1000105. PubMed ID: 19419242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
    Grigull J; Mnaimneh S; Pootoolal J; Robinson MD; Hughes TR
    Mol Cell Biol; 2004 Jun; 24(12):5534-47. PubMed ID: 15169913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles.
    Kim J; Iyer VR
    Mol Cell Biol; 2004 Sep; 24(18):8104-12. PubMed ID: 15340072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.