BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18667453)

  • 1. Computational and experimental analyses of furcatin hydrolase for substrate specificity studies of disaccharide-specific glycosidases.
    Daiyasu H; Saino H; Tomoto H; Mizutani M; Sakata K; Toh H
    J Biochem; 2008 Oct; 144(4):467-75. PubMed ID: 18667453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Furcatin hydrolase from Viburnum furcatum Blume is a novel disaccharide-specific acuminosidase in glycosyl hydrolase family 1.
    Ahn YO; Mizutani M; Saino H; Sakata K
    J Biol Chem; 2004 May; 279(22):23405-14. PubMed ID: 14976214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
    Mian IS
    Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide.
    Itoh T; Ochiai A; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2006 Jul; 360(3):573-85. PubMed ID: 16781735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vicianin hydrolase is a novel cyanogenic beta-glycosidase specific to beta-vicianoside (6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside) in seeds of Vicia angustifolia.
    Ahn YO; Saino H; Mizutani M; Shimizu B; Sakata K
    Plant Cell Physiol; 2007 Jul; 48(7):938-47. PubMed ID: 17548373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of substrate specificity in family 1 glycoside hydrolases.
    Marana SR
    IUBMB Life; 2006 Feb; 58(2):63-73. PubMed ID: 16611572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis.
    Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N
    FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of glycoside hydrolase family 1 specificities.
    Hill AD; Reilly PJ
    Biopolymers; 2008 Nov; 89(11):1021-31. PubMed ID: 18615662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling.
    Hadi T; Dahl U; Mayer C; Tanner ME
    Biochemistry; 2008 Nov; 47(44):11547-58. PubMed ID: 18837509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and mutational analyses of substrate recognition of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum.
    Suzuki R; Katayama T; Kitaoka M; Kumagai H; Wakagi T; Shoun H; Ashida H; Yamamoto K; Fushinobu S
    J Biochem; 2009 Sep; 146(3):389-98. PubMed ID: 19502354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of substrate recognition in thermostable alpha-glucosidases belonging to glycoside hydrolase family 13.
    Tsujimoto Y; Tanaka H; Takemura R; Yokogawa T; Shimonaka A; Matsui H; Kashiwabara S; Watanabe K; Suzuki Y
    J Biochem; 2007 Jul; 142(1):87-93. PubMed ID: 17525102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peculiarities and systematics of microbial diglycosidases, and their applications in food technology.
    Baglioni M; Breccia JD; Mazzaferro LS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2693-2700. PubMed ID: 33745010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism of retaining alpha-galactosidase belonging to glycoside hydrolase family 97.
    Okuyama M; Kitamura M; Hondoh H; Kang MS; Mori H; Kimura A; Tanaka I; Yao M
    J Mol Biol; 2009 Oct; 392(5):1232-41. PubMed ID: 19646996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68.
    Pons T; Naumoff DG; Martínez-Fleites C; Hernández L
    Proteins; 2004 Feb; 54(3):424-32. PubMed ID: 14747991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Substrate specificity and action mechanism of glycosidases].
    Borzova NV; Varbanets' LD
    Mikrobiol Z; 2005; 67(1):67-86. PubMed ID: 15765886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors.
    Saino H; Shimizu T; Hiratake J; Nakatsu T; Kato H; Sakata K; Mizutani M
    J Biol Chem; 2014 Jun; 289(24):16826-34. PubMed ID: 24753293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate.
    Itoh T; Ochiai A; Mikami B; Hashimoto W; Murata K
    Biochem Biophys Res Commun; 2006 Sep; 347(4):1021-9. PubMed ID: 16870154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rutinosidase and other diglycosidases: Rising stars in biotechnology.
    Křen V; Bojarová P
    Biotechnol Adv; 2023 Nov; 68():108217. PubMed ID: 37481095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of functional divergence within two structurally related glycoside hydrolase families.
    Mertz B; Gu X; Reilly PJ
    Biopolymers; 2009 Jun; 91(6):478-95. PubMed ID: 19189377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of human cytosolic beta-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase.
    Tribolo S; Berrin JG; Kroon PA; Czjzek M; Juge N
    J Mol Biol; 2007 Jul; 370(5):964-75. PubMed ID: 17555766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.