These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18667545)

  • 1. The influence of visual perturbations on the neural control of limb stiffness.
    Wong J; Wilson ET; Malfait N; Gribble PL
    J Neurophysiol; 2009 Jan; 101(1):246-57. PubMed ID: 18667545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limb stiffness is modulated with spatial accuracy requirements during movement in the absence of destabilizing forces.
    Wong J; Wilson ET; Malfait N; Gribble PL
    J Neurophysiol; 2009 Mar; 101(3):1542-9. PubMed ID: 19144739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual Feedback Processing of the Limb Involves Two Distinct Phases.
    Cross KP; Cluff T; Takei T; Scott SH
    J Neurosci; 2019 Aug; 39(34):6751-6765. PubMed ID: 31308095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Done in 100 ms: path-dependent visuomotor transformation in the human upper limb.
    Gu C; Pruszynski JA; Gribble PL; Corneil BD
    J Neurophysiol; 2018 Apr; 119(4):1319-1328. PubMed ID: 29212925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contralateral manual compensation for velocity-dependent force perturbations.
    Jackson CP; Miall RC
    Exp Brain Res; 2008 Jan; 184(2):261-7. PubMed ID: 17973103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-field adaptation without proprioception: can vision be used to model limb dynamics?
    Sarlegna FR; Malfait N; Bringoux L; Bourdin C; Vercher JL
    Neuropsychologia; 2010 Jan; 48(1):60-7. PubMed ID: 19695273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment.
    Cesqui B; Macrì G; Dario P; Micera S
    J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to Coriolis force perturbation of movement trajectory; role of proprioceptive and cutaneous somatosensory feedback.
    Lackner JR; DiZio P
    Adv Exp Med Biol; 2002; 508():69-78. PubMed ID: 12171153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer and durability of acquired patterns of human arm stiffness.
    Darainy M; Malfait N; Towhidkhah F; Ostry DJ
    Exp Brain Res; 2006 Apr; 170(2):227-37. PubMed ID: 16328279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-field visual motion directly induces an involuntary rapid manual following response.
    Saijo N; Murakami I; Nishida S; Gomi H
    J Neurosci; 2005 May; 25(20):4941-51. PubMed ID: 15901775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reach adaptation and final position control amid environmental uncertainty after stroke.
    Scheidt RA; Stoeckmann T
    J Neurophysiol; 2007 Apr; 97(4):2824-36. PubMed ID: 17267755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization strategies for unstable dynamics.
    Saha DJ; Morasso P
    PLoS One; 2012; 7(1):e30301. PubMed ID: 22279580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociable effects of the implicit and explicit memory systems on learning control of reaching.
    Hwang EJ; Smith MA; Shadmehr R
    Exp Brain Res; 2006 Aug; 173(3):425-37. PubMed ID: 16506003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long lasting aftereffect of a single prism adaptation: Directionally biased shift in proprioception and late onset shift of internal egocentric reference frame.
    Hatada Y; Miall RC; Rossetti Y
    Exp Brain Res; 2006 Sep; 174(1):189-98. PubMed ID: 16636797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics.
    Martin CZ; Lapierre P; Haché S; Lucien D; Green AM
    J Neurophysiol; 2021 Apr; 125(4):1022-1045. PubMed ID: 33502952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm-trunk coordination in the absence of proprioception.
    Tunik E; Poizner H; Levin MF; Adamovich SV; Messier J; Lamarre Y; Feldman AG
    Exp Brain Res; 2003 Dec; 153(3):343-55. PubMed ID: 14504854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.