BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 18668202)

  • 41. Sphingolipids and cell signalling.
    Fredman P
    J Inherit Metab Dis; 1998 Aug; 21(5):472-80. PubMed ID: 9728328
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways.
    Igarashi Y
    J Biochem; 1997 Dec; 122(6):1080-7. PubMed ID: 9498549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sphingolipids in mitochondria.
    Hernández-Corbacho MJ; Salama MF; Canals D; Senkal CE; Obeid LM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jan; 1862(1):56-68. PubMed ID: 27697478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of Ceramide De Novo Synthesis Ameliorates Diet Induced Skeletal Muscles Insulin Resistance.
    Kurek K; Mikłosz A; Łukaszuk B; Chabowski A; Górski J; Żendzian-Piotrowska M
    J Diabetes Res; 2015; 2015():154762. PubMed ID: 26380311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle.
    Blachnio-Zabielska A; Baranowski M; Zabielski P; Gorski J
    J Cell Physiol; 2010 Nov; 225(3):786-91. PubMed ID: 20568228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the role of sphingolipids in cell survival and death.
    Iessi E; Marconi M; Manganelli V; Sorice M; Malorni W; Garofalo T; Matarrese P
    Int Rev Cell Mol Biol; 2020; 351():149-195. PubMed ID: 32247579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics.
    Adada M; Canals D; Hannun YA; Obeid LM
    Biochim Biophys Acta; 2014 May; 1841(5):727-37. PubMed ID: 23850862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation.
    Formigli L; Sassoli C; Squecco R; Bini F; Martinesi M; Chellini F; Luciani G; Sbrana F; Zecchi-Orlandini S; Francini F; Meacci E
    J Cell Sci; 2009 May; 122(Pt 9):1322-33. PubMed ID: 19351713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stem cells and plasticity of skeletal muscle cell differentiation: potential application to cell therapy for degenerative muscular diseases.
    Endo T
    Regen Med; 2007 May; 2(3):243-56. PubMed ID: 17511561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of sphingosine-1-phosphate in skeletal muscle: Physiology, mechanisms, and clinical perspectives.
    Cordeiro AV; Silva VRR; Pauli JR; da Silva ASR; Cintra DE; Moura LP; Ropelle ER
    J Cell Physiol; 2019 Jul; 234(7):10047-10059. PubMed ID: 30523638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle.
    Perreault L; Newsom SA; Strauss A; Kerege A; Kahn DE; Harrison KA; Snell-Bergeon JK; Nemkov T; D'Alessandro A; Jackman MR; MacLean PS; Bergman BC
    JCI Insight; 2018 Feb; 3(3):. PubMed ID: 29415895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment.
    Raza Y; Salman H; Luberto C
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685487
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sphingolipid metabolism in brain insulin resistance and neurological diseases.
    Mei M; Liu M; Mei Y; Zhao J; Li Y
    Front Endocrinol (Lausanne); 2023; 14():1243132. PubMed ID: 37867511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids.
    Hannun YA; Linardic CM
    Biochim Biophys Acta; 1993 Dec; 1154(3-4):223-36. PubMed ID: 8280742
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.
    Nagata Y; Ohashi K; Wada E; Yuasa Y; Shiozuka M; Nonomura Y; Matsuda R
    Exp Cell Res; 2014 Aug; 326(1):112-24. PubMed ID: 24960577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting sphingolipid metabolism in the treatment of obesity/type 2 diabetes.
    Bellini L; Campana M; Mahfouz R; Carlier A; Véret J; Magnan C; Hajduch E; Le Stunff H
    Expert Opin Ther Targets; 2015; 19(8):1037-50. PubMed ID: 25814122
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Therapeutic applications of bioactive sphingolipids in hematological malignancies.
    Ekiz HA; Baran Y
    Int J Cancer; 2010 Oct; 127(7):1497-506. PubMed ID: 20503271
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of sphingolipids in oestrogen signalling in breast cancer cells: an update.
    Sukocheva O; Wadham C
    J Endocrinol; 2014 Mar; 220(3):R25-35. PubMed ID: 24323911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of altered sphingolipid acyl chain length on various disease models.
    Park WJ; Park JW
    Biol Chem; 2015 Jun; 396(6-7):693-705. PubMed ID: 25720066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.