These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 18668696)
1. A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. D'Ambrosio C; Arena S; Salzano AM; Renzone G; Ledda L; Scaloni A Proteomics; 2008 Sep; 8(17):3657-66. PubMed ID: 18668696 [TBL] [Abstract][Full Text] [Related]
2. Characterisation of host defence proteins in milk using a proteomic approach. Smolenski G; Haines S; Kwan FY; Bond J; Farr V; Davis SR; Stelwagen K; Wheeler TT J Proteome Res; 2007 Jan; 6(1):207-15. PubMed ID: 17203965 [TBL] [Abstract][Full Text] [Related]
3. Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. Cozzolino R; Passalacqua S; Salemi S; Garozzo D J Mass Spectrom; 2002 Sep; 37(9):985-91. PubMed ID: 12271441 [TBL] [Abstract][Full Text] [Related]
5. Effect of minor milk proteins in chymosin separated whey and casein fractions on cheese yield as determined by proteomics and multivariate data analysis. Wedholm A; Møller HS; Stensballe A; Lindmark-Månsson H; Karlsson AH; Andersson R; Andrén A; Larsen LB J Dairy Sci; 2008 Oct; 91(10):3787-97. PubMed ID: 18832200 [TBL] [Abstract][Full Text] [Related]
6. Cow's milk allergens identification by two-dimensional immunoblotting and mass spectrometry. Natale M; Bisson C; Monti G; Peltran A; Garoffo LP; Valentini S; Fabris C; Bertino E; Coscia A; Conti A Mol Nutr Food Res; 2004 Oct; 48(5):363-9. PubMed ID: 15672476 [TBL] [Abstract][Full Text] [Related]
7. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Cozzolino R; Passalacqua S; Salemi S; Malvagna P; Spina E; Garozzo D J Mass Spectrom; 2001 Sep; 36(9):1031-7. PubMed ID: 11599081 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. Hinz K; O'Connor PM; Huppertz T; Ross RP; Kelly AL J Dairy Res; 2012 May; 79(2):185-91. PubMed ID: 22365180 [TBL] [Abstract][Full Text] [Related]
9. Identification of protein markers for the occurrence of defrosted material in milk through a MALDI-TOF-MS profiling approach. Arena S; Salzano AM; Scaloni A J Proteomics; 2016 Sep; 147():56-65. PubMed ID: 26910555 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the human casein phosphoproteome by 2-D electrophoresis and MALDI-TOF/TOF MS reveals new phosphoforms. Poth AG; Deeth HC; Alewood PF; Holland JW J Proteome Res; 2008 Nov; 7(11):5017-27. PubMed ID: 18847231 [TBL] [Abstract][Full Text] [Related]
11. Redox proteomics of fat globules unveils broad protein lactosylation and compositional changes in milk samples subjected to various technological procedures. Arena S; Renzone G; Novi G; Scaloni A J Proteomics; 2011 Oct; 74(11):2453-75. PubMed ID: 21256992 [TBL] [Abstract][Full Text] [Related]
12. Detection and sequence determination of a new variant beta-lactoglobulin II from donkey. Cunsolo V; Costa A; Saletti R; Muccilli V; Foti S Rapid Commun Mass Spectrom; 2007; 21(8):1438-46. PubMed ID: 17377935 [TBL] [Abstract][Full Text] [Related]
13. Modern proteomic methodologies for the characterization of lactosylation protein targets in milk. Arena S; Renzone G; Novi G; Paffetti A; Bernardini G; Santucci A; Scaloni A Proteomics; 2010 Oct; 10(19):3414-34. PubMed ID: 20707006 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of the temporal expression of bovine milk proteins during coliform mastitis and label-free relative quantification. Boehmer JL; Ward JL; Peters RR; Shefcheck KJ; McFarland MA; Bannerman DD J Dairy Sci; 2010 Feb; 93(2):593-603. PubMed ID: 20105531 [TBL] [Abstract][Full Text] [Related]
15. A widespread picture of the Streptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches. Salzano AM; Arena S; Renzone G; D'Ambrosio C; Rullo R; Bruschi M; Ledda L; Maglione G; Candiano G; Ferrara L; Scaloni A Proteomics; 2007 May; 7(9):1420-33. PubMed ID: 17407180 [TBL] [Abstract][Full Text] [Related]
16. Comparative proteomic analysis of casein and whey as prepared by chymosin-induced separation, isoelectric precipitation or ultracentrifugation. Jensen HB; Poulsen NA; Møller HS; Stensballe A; Larsen LB J Dairy Res; 2012 Nov; 79(4):451-8. PubMed ID: 22998726 [TBL] [Abstract][Full Text] [Related]
17. Peptidomic approach based on combined capillary isoelectric focusing and mass spectrometry for the characterization of the plasmin primary products from bovine and water buffalo beta-casein. Somma A; Ferranti P; Addeo F; Mauriello R; Chianese L J Chromatogr A; 2008 May; 1192(2):294-300. PubMed ID: 18400224 [TBL] [Abstract][Full Text] [Related]
18. A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Joss JL; Molloy MP; Hinds L; Deane E Dev Comp Immunol; 2009 Feb; 33(2):152-61. PubMed ID: 18778730 [TBL] [Abstract][Full Text] [Related]
19. The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. Angeletti R; Gioacchini AM; Seraglia R; Piro R; Traldi P J Mass Spectrom; 1998 Jun; 33(6):525-31. PubMed ID: 9654754 [TBL] [Abstract][Full Text] [Related]
20. Selection of possible marker peptides for the detection of major ruminant milk proteins in food by liquid chromatography-tandem mass spectrometry. Ansari P; Stoppacher N; Rudolf J; Schuhmacher R; Baumgartner S Anal Bioanal Chem; 2011 Jan; 399(3):1105-15. PubMed ID: 21107975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]