These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18669055)

  • 21. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):243-54. PubMed ID: 12407458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.
    Dall'agnol LT; Cordas CM; Moura JJ
    Bioelectrochemistry; 2014 Jun; 97():43-51. PubMed ID: 24238897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological souring and mitigation in oil reservoirs.
    Gieg LM; Jack TR; Foght JM
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):263-82. PubMed ID: 21858492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle.
    Grigoryan A; Voordouw G
    Ann N Y Acad Sci; 2008 Mar; 1125():345-52. PubMed ID: 18378604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A microbiological study of an underground gas storage in the process of gas extraction].
    Ivanova AE; Borzenkov IA; Tarasov AL; Milekhina EI; Beliaev SS
    Mikrobiologiia; 2007; 76(4):524-32. PubMed ID: 17974210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Applying a most probable number method for enumerating planktonic, dissimilatory, ammonium-producing, nitrate-reducing bacteria in oil field waters.
    Eckford RE; Fedorak PM
    Can J Microbiol; 2005 Aug; 51(8):725-9. PubMed ID: 16234872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of molybdate on sulfide production from methionine and sulfate by ruminal microorganisms of sheep.
    Huisingh J; Milholland DC; Matrone G
    J Nutr; 1975 Sep; 105(9):1199-205. PubMed ID: 1159535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery].
    Nazina TN; Grigor'ian AA; Shestakova NM; Babich TL; Ivoĭlov VS; Feng Q; Ni F; Wang J; She Y; Xiang T; Luo Z; Beliaev SS; Ivanov MV
    Mikrobiologiia; 2007; 76(3):329-39. PubMed ID: 17633408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.
    Mohd Ali MKFB; Abu Bakar A; Md Noor N; Yahaya N; Ismail M; Rashid AS
    Environ Technol; 2017 Oct; 38(19):2427-2439. PubMed ID: 27875932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Increase in the ecological danger upon the use of biocides for fighting corrosion induced by microorganisms].
    Zhigletsova SK; Rodin VB; Kobelev VS; Akimova NA; Aleksandrova NV; Rasulova GE; Mironova RI; Noskova VP; Kholodenko VP
    Prikl Biokhim Mikrobiol; 2000; 36(6):694-700. PubMed ID: 11116915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of nitrate addition on biofilm properties and activities in rising main sewers.
    Mohanakrishnan J; Gutierrez O; Sharma KR; Guisasola A; Werner U; Meyer RL; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4225-37. PubMed ID: 19577270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpreting microbiologically assisted cracking with E
    Wu T; Sun C; Ke W
    Bioelectrochemistry; 2018 Apr; 120():57-65. PubMed ID: 29175692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biofilm model for prediction of pollutant transformation in sewers.
    Jiang F; Leung DH; Li S; Chen GH; Okabe S; van Loosdrecht MC
    Water Res; 2009 Jul; 43(13):3187-98. PubMed ID: 19487008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion.
    Little B; Lee J; Ray R
    Biofouling; 2007; 23(1-2):87-97. PubMed ID: 17453733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofouling and biocorrosion in industrial water systems.
    Coetser SE; Cloete TE
    Crit Rev Microbiol; 2005; 31(4):213-32. PubMed ID: 16417202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Intensity of the process of sulfate reduction in the Sea of Azov].
    Tolokonnikova LI
    Mikrobiologiia; 1977; 46(2):352-7. PubMed ID: 882018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection].
    Kopteva ZhP; Zanina VV; Purish LM; Piliashenko-Novokhatnyĭ AI; Kozlova IA
    Mikrobiol Z; 2004; 66(5):68-75. PubMed ID: 15554300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.