These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18670054)

  • 1. In-beam PET measurement of 7Li3+ irradiation induced beta+-activity.
    Priegnitz M; Möckel D; Parodi K; Sommerer F; Fiedler F; Enghardt W
    Phys Med Biol; 2008 Aug; 53(16):4443-53. PubMed ID: 18670054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-beam PET monitoring of mono-energetic (16)O and (12)C beams: experiments and FLUKA simulations for homogeneous targets.
    Sommerer F; Cerutti F; Parodi K; Ferrari A; Enghardt W; Aiginger H
    Phys Med Biol; 2009 Jul; 54(13):3979-96. PubMed ID: 19494424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the detector arrangement for in-beam PET for hadron therapy monitoring.
    Crespo P; Shakirin G; Enghardt W
    Phys Med Biol; 2006 May; 51(9):2143-63. PubMed ID: 16625032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of beta+ activity generated by hard photons by means of PET.
    Möckel D; Müller H; Pawelke J; Sommer M; Will E; Enghardt W
    Phys Med Biol; 2007 May; 52(9):2515-30. PubMed ID: 17440249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the effectiveness of ion range determination from in-beam PET data.
    Fiedler F; Shakirin G; Skowron J; Braess H; Crespo P; Kunath D; Pawelke J; Pönisch F; Enghardt W
    Phys Med Biol; 2010 Apr; 55(7):1989-98. PubMed ID: 20224157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the accuracy of the FLUKA code for transport of therapeutic ion beams in matter.
    Sommerer F; Parodi K; Ferrari A; Poljanc K; Enghardt W; Aiginger H
    Phys Med Biol; 2006 Sep; 51(17):4385-98. PubMed ID: 16912388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-beam PET measurements of biological half-lives of 12C irradiation induced beta+-activity.
    Fiedler F; Priegnitz M; Jülich R; Pawelke J; Crespo P; Parodi K; Pönisch F; Enghardt W
    Acta Oncol; 2008; 47(6):1077-86. PubMed ID: 18770062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.
    Pshenichnov I; Larionov A; Mishustin I; Greiner W
    Phys Med Biol; 2007 Dec; 52(24):7295-312. PubMed ID: 18065840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison of suitability of various beams for range monitoring with induced beta+ activity in hadron therapy.
    Inaniwa T; Tomitani T; Kohno T; Kanai T
    Phys Med Biol; 2005 Mar; 50(6):1131-45. PubMed ID: 15798313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdosimetry measurements characterizing the radiation fields of 300 MeV/u 12C and 185 MeV/u 7Li pencil beams stopping in water.
    Martino G; Durante M; Schardt D
    Phys Med Biol; 2010 Jun; 55(12):3441-9. PubMed ID: 20508316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron- and cyclotron-based facilities.
    Parodi K; Bortfeld T; Haberer T
    Int J Radiat Oncol Biol Phys; 2008 Jul; 71(3):945-56. PubMed ID: 18514787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First in-beam PET measurement of beta+ radioactivity induced by hard photon beams.
    Kluge T; Möckel D; Pawelke J; Enghardt W
    Phys Med Biol; 2007 Oct; 52(20):N467-73. PubMed ID: 17921570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques.
    Shakirin G; Braess H; Fiedler F; Kunath D; Laube K; Parodi K; Priegnitz M; Enghardt W
    Phys Med Biol; 2011 Mar; 56(5):1281-98. PubMed ID: 21285487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the irradiation field of 12C and 16O SOBP beams using positron emitters produced through projectile fragmentation reactions.
    Inaniwa T; Kohno T; Tomitani T; Sato S
    Phys Med Biol; 2008 Feb; 53(3):529-42. PubMed ID: 18199900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams.
    Bauer J; Unholtz D; Kurz C; Parodi K
    Phys Med Biol; 2013 Aug; 58(15):5193-213. PubMed ID: 23835872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D particle therapy PET simulation for moving targets irradiated with scanned ion beams.
    Laube K; Menkel S; Bert C; Enghardt W; Helmbrecht S; Saito N; Fiedler F
    Phys Med Biol; 2013 Feb; 58(3):513-33. PubMed ID: 23306167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of two dedicated 'in beam' PET systems via simultaneous imaging of (12)C-induced beta(+)-activity.
    Attanasi F; Belcari N; Del Guerra A; Enghardt W; Moehrs S; Parodi K; Rosso V; Vecchio S
    Phys Med Biol; 2009 Jan; 54(2):N29-35. PubMed ID: 19088389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of the physical potential of proton beam range verification with PET/CT.
    Knopf A; Parodi K; Paganetti H; Cascio E; Bonab A; Bortfeld T
    Phys Med Biol; 2008 Aug; 53(15):4137-51. PubMed ID: 18635897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.
    Gwosch K; Hartmann B; Jakubek J; Granja C; Soukup P; Jäkel O; Martišíková M
    Phys Med Biol; 2013 Jun; 58(11):3755-73. PubMed ID: 23665924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans.
    Knopf A; Parodi K; Bortfeld T; Shih HA; Paganetti H
    Phys Med Biol; 2009 Jul; 54(14):4477-95. PubMed ID: 19556685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.