These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18670127)

  • 1. Existence of a new reactive intermediate oxygen species in hypoxanthine and xanthine oxidase reaction.
    Sato E; Mokudai T; Niwano Y; Kamibayashi M; Kohno M
    Chem Pharm Bull (Tokyo); 2008 Aug; 56(8):1194-7. PubMed ID: 18670127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of reactive oxygen species generated by phorbol 12-myristate 13-acetate-stimulated oral polymorphonuclear cells from healthy human volunteers without any dental problems.
    Yaekashiwa N; Sato E; Nakamura K; Iwasawa A; Kudo A; Kanno T; Kohno M; Niwano Y
    Arch Oral Biol; 2012 Jun; 57(6):636-41. PubMed ID: 22104135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of M4PO and oxygen-17 in the study on hydroxyl radical generation in the hypoxanthine-xanthine oxidase reaction.
    Mori H; Arai T; Mori K; Tsutsui H; Makino K
    Biochem Mol Biol Int; 1994 Mar; 32(3):523-9. PubMed ID: 8032319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation.
    Kuppusamy P; Zweier JL
    J Biol Chem; 1989 Jun; 264(17):9880-4. PubMed ID: 2542334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of hydroxyl free radical in the xanthine oxidase system with addition of 1-methyl-3-nitro-1-nitrosoguanidine.
    Mikuni T; Tatsuta M
    Free Radic Res; 2002 Jun; 36(6):641-7. PubMed ID: 12180189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a reevaluation.
    Zielonka J; Lambeth JD; Kalyanaraman B
    Free Radic Biol Med; 2013 Dec; 65():1310-1314. PubMed ID: 24080119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of chemical systems for luminometric determination of antioxidant capacity towards individual reactive oxygen species.
    Komrskova D; Lojek A; Hrbac J; Ciz M
    Luminescence; 2006; 21(4):239-44. PubMed ID: 16791875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical generation by red tide algae.
    Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase.
    Penning TM; Ohnishi ST; Ohnishi T; Harvey RG
    Chem Res Toxicol; 1996; 9(1):84-92. PubMed ID: 8924621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide radical scavenging activity of idebenone in vitro studied by ESR spin trapping method and direct ESR measurement at liquid nitrogen temperature.
    Murakami M; Zs -Nagy I
    Arch Gerontol Geriatr; 1990; 11(3):199-214. PubMed ID: 15374469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidative effects of a processed grain food.
    Minamiyama Y; Yoshikawa T; Tanigawa T; Takahashi S; Naito Y; Ichikawa H; Kondo M
    J Nutr Sci Vitaminol (Tokyo); 1994 Oct; 40(5):467-77. PubMed ID: 7891207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates.
    Radi R; Rubbo H; Thomson L; Prodanov E
    Free Radic Biol Med; 1990; 8(2):121-6. PubMed ID: 2158934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012.
    Daiber A; Oelze M; August M; Wendt M; Sydow K; Wieboldt H; Kleschyov AL; Munzel T
    Free Radic Res; 2004 Mar; 38(3):259-69. PubMed ID: 15129734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scavenging effects of Mallotus repandus on active oxygen species.
    Lin JM; Lin CC; Chen MF; Ujiie T; Takada A
    J Ethnopharmacol; 1995 Jun; 46(3):175-81. PubMed ID: 7564416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does luminol chemiluminescence detect free radical scavengers?
    Clapperton M; McMurray J; Fisher AC; Dargie HJ
    Br J Clin Pharmacol; 1995 Jun; 39(6):688-91. PubMed ID: 7654490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of singlet oxygen-derived hydroxyl radical adducts during merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection.
    Feix JB; Kalyanaraman B
    Arch Biochem Biophys; 1991 Nov; 291(1):43-51. PubMed ID: 1656888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor--kappaB activation by phorbol 12-myristate 13-acetate.
    Ye J; Ding M; Zhang X; Rojanasakul Y; Shi X
    Ann Clin Lab Sci; 2000 Jan; 30(1):65-71. PubMed ID: 10678585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.