BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18670326)

  • 1. Validation of a novel minimally invasive intervertebral disc pressure sensor utilizing in-fiber Bragg gratings in a porcine model: an ex vivo study.
    Dennison CR; Wild PM; Dvorak MF; Wilson DR; Cripton PA
    Spine (Phila Pa 1976); 2008 Aug; 33(17):E589-94. PubMed ID: 18670326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex vivo measurement of lumbar intervertebral disc pressure using fibre-Bragg gratings.
    Dennison CR; Wild PM; Byrnes PW; Saari A; Itshayek E; Wilson DC; Zhu QA; Dvorak MF; Cripton PA; Wilson DR
    J Biomech; 2008; 41(1):221-5. PubMed ID: 17761185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoresistive pressure sensors in the measurement of intervertebral disc hydrostatic pressure.
    Moore MK; Fulop S; Tabib-Azar M; Hart DJ
    Spine J; 2009 Dec; 9(12):1030-4. PubMed ID: 19837007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro measurement of pressure differences using manometry at various injection speeds during discography.
    Seo KS; Derby R; Date ES; Lee SH; Kim BJ; Lee CH
    Spine J; 2007; 7(1):68-73. PubMed ID: 17197335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The leakage pathway and effect of needle gauge on degree of disc injury post anular puncture: a comparative study using aged human and adolescent porcine discs.
    Wang JL; Tsai YC; Wang YH
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1809-15. PubMed ID: 17762287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsion-induced pressure distribution changes in human intervertebral discs: an in vitro study.
    Yantzer BK; Freeman TB; Lee WE; Nichols T; Inamasu J; Guiot B; Johnson WM
    Spine (Phila Pa 1976); 2007 Apr; 32(8):881-4. PubMed ID: 17426632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function.
    Hsieh AH; Hwang D; Ryan DA; Freeman AK; Kim H
    Spine (Phila Pa 1976); 2009 May; 34(10):998-1005. PubMed ID: 19404174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing manometric pressure during pressure-controlled discography.
    Shin DA; Kim SH; Han IB; Rhim SC; Kim HI
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E790-3. PubMed ID: 19829241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologic response of the intervertebral disc to static and dynamic compression in vitro.
    Wang DL; Jiang SD; Dai LY
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2521-8. PubMed ID: 17978649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable MEMS compressive stress sensors: Design, fabrication and calibration with application to the disc annulus.
    Glos DL; Sauser FE; Papautsky I; Bylski-Austrow DI
    J Biomech; 2010 Aug; 43(11):2244-8. PubMed ID: 20451207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc.
    Wang JL; Wu TK; Lin TC; Cheng CH; Huang SC
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1863-9. PubMed ID: 18670339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the Trp2 allele of COL9A2 is associated with alterations in the mechanical properties of human intervertebral discs.
    Aladin DM; Cheung KM; Chan D; Yee AF; Jim JJ; Luk KD; Lu WW
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2820-6. PubMed ID: 18246003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading.
    Jünger S; Gantenbein-Ritter B; Lezuo P; Alini M; Ferguson SJ; Ito K
    Spine (Phila Pa 1976); 2009 May; 34(12):1264-71. PubMed ID: 19455001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When are intervertebral discs stronger than their adjacent vertebrae?
    Skrzypiec D; Tarala M; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2455-61. PubMed ID: 18090085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro measurement of pressure in intervertebral discs and annulus fibrosus with and without annular tears during discography.
    Lee SH; Derby R; Chen Y; Seo KS; Kim MJ
    Spine J; 2004; 4(6):614-8. PubMed ID: 15541691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model.
    Murrell W; Sanford E; Anderberg L; Cavanagh B; Mackay-Sim A
    Spine J; 2009 Jul; 9(7):585-94. PubMed ID: 19345615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study.
    Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP
    J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.