BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18670507)

  • 1. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range.
    Lee KS; Rolland JP
    Opt Lett; 2008 Aug; 33(15):1696-8. PubMed ID: 18670507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography.
    Wang W; Wang G; Ma J; Cheng L; Guan BO
    Opt Express; 2019 Jan; 27(2):358-366. PubMed ID: 30696123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter.
    Kim J; Xing J; Nam HS; Song JW; Kim JW; Yoo H
    Opt Lett; 2017 Feb; 42(3):379-382. PubMed ID: 28146481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple aperture synthetic optical coherence tomography for biological tissue imaging.
    Bo E; Ge X; Wang L; Wu X; Luo Y; Chen S; Chen S; Liang H; Ni G; Yu X; Liu L
    Opt Express; 2018 Jan; 26(2):772-780. PubMed ID: 29401957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts.
    Luo Y; Cui D; Yu X; Bo E; Wang X; Wang N; Braganza CS; Chen S; Liu X; Xiong Q; Chen S; Chen S; Liu L
    J Biophotonics; 2018 Apr; 11(4):e201700141. PubMed ID: 28787543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homodyne en face optical coherence tomography.
    Yaqoob Z; Fingler J; Heng X; Yang C
    Opt Lett; 2006 Jun; 31(12):1815-7. PubMed ID: 16729080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo.
    Park B; Lee H; Jeon S; Ahn J; Kim HH; Kim C
    J Biophotonics; 2019 Feb; 12(2):e201800215. PubMed ID: 30084200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 140 GHz Ultra-Long Bessel-Like Beam with Near-Wavelength Beamwidth.
    Ok G; Park KJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth of focus and intensity distribution of a lensacon illuminated by a partially coherent Gaussian Schell vortex beam.
    Qusailah MS; Alkelly AA; Al-Nadary HO; Kaid SAM; Al-Ahsab HT
    Appl Opt; 2024 Apr; 63(12):3138-3147. PubMed ID: 38856458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography.
    Lorenser D; Christian Singe C; Curatolo A; Sampson DD
    Opt Lett; 2014 Feb; 39(3):548-51. PubMed ID: 24487862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflective axicon based energy-efficient extended depth of focus quasi-Bessel beam probe for common-path optical coherence tomography.
    Vairagi K; Gupta P; Tiwari UK; Mondal SK
    Appl Opt; 2023 Jan; 62(3):511-517. PubMed ID: 36821252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common-path interferometer for frequency-domain optical coherence tomography.
    Vakhtin AB; Kane DJ; Wood WR; Peterson KA
    Appl Opt; 2003 Dec; 42(34):6953-8. PubMed ID: 14661810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue characterization using axicon probe-assisted common-path optical coherence tomography.
    Gupta P; Vairagi K; Sharma V; Prasad KK; Mondal SK
    Opt Express; 2024 May; 32(11):20194-20206. PubMed ID: 38859135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe.
    Qiu J; Han T; Liu Z; Meng J; Ding Z
    Opt Lett; 2020 Feb; 45(4):976-979. PubMed ID: 32058521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced spectral-domain optical coherence tomography (SD-OCT) using in situ ultrasonic virtual tunable optical waveguides.
    Karimi Y; Yang H; Liu J; Park BH; Chamanzar M
    Opt Express; 2022 Sep; 30(19):34256-34275. PubMed ID: 36242442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin fiber probes with extended depth of focus for optical coherence tomography.
    Lorenser D; Yang X; Sampson DD
    Opt Lett; 2012 May; 37(10):1616-8. PubMed ID: 22627514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband rotary joint for high-speed ultrahigh-resolution endoscopic OCT imaging at 800  nm.
    Park HC; Mavadia-Shukla J; Yuan W; Alemohammad M; Li X
    Opt Lett; 2017 Dec; 42(23):4978-4981. PubMed ID: 29216160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution optical coherence tomography over a large depth range with an axicon lens.
    Ding Z; Ren H; Zhao Y; Nelson JS; Chen Z
    Opt Lett; 2002 Feb; 27(4):243-5. PubMed ID: 18007767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.