These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 18670560)
1. Light distribution in the erythrocyte under laser irradiation: a finite-difference time-domain calculation. Wang XQ; Yu JT; Wang PN; Chen JY Appl Opt; 2008 Aug; 47(22):4037-44. PubMed ID: 18670560 [TBL] [Abstract][Full Text] [Related]
2. Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation. Yu JT; Chen JY; Lin ZF; Xu L; Wang PN; Gu M J Biomed Opt; 2005; 10(6):064013. PubMed ID: 16409078 [TBL] [Abstract][Full Text] [Related]
3. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation. Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348 [TBL] [Abstract][Full Text] [Related]
4. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. Lu JQ; Yang P; Hu XH J Biomed Opt; 2005; 10(2):024022. PubMed ID: 15910095 [TBL] [Abstract][Full Text] [Related]
5. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells. Sebastián JL; Muñoz S; Sancho M; Alvarez G; Miranda JM Phys Med Biol; 2007 Dec; 52(23):6831-47. PubMed ID: 18029978 [TBL] [Abstract][Full Text] [Related]
6. A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure. Muñoz San MS; Sebastián JL; Sancho M; Miranda JM Phys Med Biol; 2003 Jun; 48(11):1649-59. PubMed ID: 12817943 [TBL] [Abstract][Full Text] [Related]
7. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields. Muñoz S; Sebastián JL; Sancho M; Miranda JM Bioelectromagnetics; 2004 Dec; 25(8):631-3. PubMed ID: 15515030 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulations of light scattering by red blood cells. Karlsson A; He J; Swartling J; Andersson-Engels S IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro. Mi XQ; Chen JY; Cen Y; Liang ZJ; Zhou LW J Photochem Photobiol B; 2004 Mar; 74(1):7-12. PubMed ID: 15043841 [TBL] [Abstract][Full Text] [Related]
10. Using chaos for remote sensing of laser radiation. Chow WW; Wieczorek S Opt Express; 2009 Apr; 17(9):7491-504. PubMed ID: 19399127 [TBL] [Abstract][Full Text] [Related]
11. Light scattering by multiple red blood cells. He J; Karlsson A; Swartling J; Andersson-Engels S J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1953-61. PubMed ID: 15497423 [TBL] [Abstract][Full Text] [Related]
12. Effective phase function for light scattered by blood. Turcu I Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers. Yu L; Sheng Y; Chiou A Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438 [TBL] [Abstract][Full Text] [Related]
14. A hybrid numerical method to compute erythrocyte TMP in low-frequency electric fields. Liu C; Sheen D; Huang K IEEE Trans Nanobioscience; 2003 Jun; 2(2):104-9. PubMed ID: 15382666 [TBL] [Abstract][Full Text] [Related]
15. Shape transformation of erythrocytes determined by light scattering changes associated with relaxation of particle orientation. Oster G; Zalusky R Biophys J; 1974 Feb; 14(2):124-9. PubMed ID: 4813156 [TBL] [Abstract][Full Text] [Related]
16. Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens. Dios F; Recolons J; Rodríguez A; Batet O Opt Express; 2008 Feb; 16(3):2206-20. PubMed ID: 18542300 [TBL] [Abstract][Full Text] [Related]
17. Light scattering by aggregated red blood cells. Tsinopoulos SV; Sellountos EJ; Polyzos D Appl Opt; 2002 Mar; 41(7):1408-17. PubMed ID: 11900021 [TBL] [Abstract][Full Text] [Related]
18. Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density. Cen Y; Chen JY Lasers Med Sci; 2004; 19(3):161-4. PubMed ID: 15549580 [TBL] [Abstract][Full Text] [Related]
19. Effect of combined treatment with perindoprilat and low-power red light laser irradiation on human erythrocyte membrane fluidity, membrane potential and acetylcholinesterase activity. Piasecka A; Leyko W; Krajewska E; Bryszewska M Scand J Clin Lab Invest; 2000 Aug; 60(5):395-402. PubMed ID: 11003259 [TBL] [Abstract][Full Text] [Related]
20. Effect of low-intensity laser radiation of the red spectrum on some properties of erythrocytes in Wistar rats. Lin'kova NS; Gorshkova OP; Shuvaeva VN; Dvoretskii DP Bull Exp Biol Med; 2008 Jan; 145(1):7-9. PubMed ID: 19023990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]