These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18670593)

  • 1. Innate visual learning through spontaneous activity patterns.
    Albert MV; Schnabel A; Field DJ
    PLoS Comput Biol; 2008 Aug; 4(8):e1000137. PubMed ID: 18670593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the early visual system optimised to be energy efficient?
    Vincent BT; Baddeley RJ; Troscianko T; Gilchrist ID
    Network; 2005; 16(2-3):175-90. PubMed ID: 16411495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo.
    Weliky M; Katz LC
    Science; 1999 Jul; 285(5427):599-604. PubMed ID: 10417392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.
    Eguchi A; Neymotin SA; Stringer SM
    Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamatergic Retinal Waves.
    Kerschensteiner D
    Front Neural Circuits; 2016; 10():38. PubMed ID: 27242446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent component analysis of temporal sequences subject to constraints by lateral geniculate nucleus inputs yields all the three major cell types of the primary visual cortex.
    Szatmáry B; Lorincz A
    J Comput Neurosci; 2001; 11(3):241-8. PubMed ID: 11796940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
    Fisher TG; Alitto HJ; Usrey WM
    J Neurosci; 2017 Jan; 37(1):226-235. PubMed ID: 28053044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the invariance properties of complex cells from their responses to natural stimuli.
    Einhäuser W; Kayser C; König P; Körding KP
    Eur J Neurosci; 2002 Feb; 15(3):475-86. PubMed ID: 11876775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of retinal spikes in driving cortical responses.
    Kara P; Reid RC
    J Neurosci; 2003 Sep; 23(24):8547-57. PubMed ID: 13679424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverberation of recent visual experience in spontaneous cortical waves.
    Han F; Caporale N; Dan Y
    Neuron; 2008 Oct; 60(2):321-7. PubMed ID: 18957223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictions of the spontaneous symmetry-breaking theory for visual code completeness and spatial scaling in single-cell learning rules.
    Webber CJ
    Neural Comput; 2001 May; 13(5):1023-43. PubMed ID: 11359643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring of variability in the lateral geniculate nucleus of the cat.
    Levine MW; Cleland BG; Mukherjee P; Kaplan E
    Biol Cybern; 1996 Sep; 75(3):219-27. PubMed ID: 8900037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse coding on the spot: spontaneous retinal waves suffice for orientation selectivity.
    Hunt JJ; Ibbotson M; Goodhill GJ
    Neural Comput; 2012 Sep; 24(9):2422-33. PubMed ID: 22734490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.
    Gjorgjieva J; Toyoizumi T; Eglen SJ
    PLoS Comput Biol; 2009 Dec; 5(12):e1000618. PubMed ID: 20041207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the primate lateral geniculate nucleus: a review of experiments and methods.
    Jeffries AM; Killian NJ; Pezaris JS
    J Physiol Paris; 2014 Feb; 108(1):3-10. PubMed ID: 24270042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An infomax-based learning rule that generates cells similar to visual cortical neurons.
    Okajima K
    Neural Netw; 2001 Nov; 14(9):1173-80. PubMed ID: 11718418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic activity and the construction of cortical circuits.
    Katz LC; Shatz CJ
    Science; 1996 Nov; 274(5290):1133-8. PubMed ID: 8895456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thalamic activity that drives visual cortical plasticity.
    Linden ML; Heynen AJ; Haslinger RH; Bear MF
    Nat Neurosci; 2009 Apr; 12(4):390-2. PubMed ID: 19252494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition.
    Shapley R; Hawken M; Ringach DL
    Neuron; 2003 Jun; 38(5):689-99. PubMed ID: 12797955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.