These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 18670889)
1. A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. Gabel F; Simon B; Nilges M; Petoukhov M; Svergun D; Sattler M J Biomol NMR; 2008 Aug; 41(4):199-208. PubMed ID: 18670889 [TBL] [Abstract][Full Text] [Related]
2. A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints. Gabel F; Simon B; Sattler M Eur Biophys J; 2006 Apr; 35(4):313-27. PubMed ID: 16416140 [TBL] [Abstract][Full Text] [Related]
3. Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. Grishaev A; Tugarinov V; Kay LE; Trewhella J; Bax A J Biomol NMR; 2008 Feb; 40(2):95-106. PubMed ID: 18008171 [TBL] [Abstract][Full Text] [Related]
4. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex. Hennig J; Wang I; Sonntag M; Gabel F; Sattler M J Biomol NMR; 2013 May; 56(1):17-30. PubMed ID: 23456097 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of a flexible two-domain protein in solution using small angle X-ray scattering and NMR data. Lemak A; Wu B; Yee A; Houliston S; Lee HW; Gutmanas A; Fang X; Garcia M; Semesi A; Wang YX; Prestegard JH; Arrowsmith CH Structure; 2014 Dec; 22(12):1862-1874. PubMed ID: 25456817 [TBL] [Abstract][Full Text] [Related]
6. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509 [TBL] [Abstract][Full Text] [Related]
7. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. Clore GM; Schwieters CD J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657 [TBL] [Abstract][Full Text] [Related]
8. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. van Dijk AD; Fushman D; Bonvin AM Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902 [TBL] [Abstract][Full Text] [Related]
9. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Delhommel F; MartÃnez-Lumbreras S; Sattler M Methods Enzymol; 2023; 678():263-297. PubMed ID: 36641211 [TBL] [Abstract][Full Text] [Related]
10. Hybrid Applications of Solution Scattering to Aid Structural Biology. Grishaev AV Adv Exp Med Biol; 2017; 1009():215-227. PubMed ID: 29218562 [TBL] [Abstract][Full Text] [Related]
11. Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data. Grishaev A; Ying J; Canny MD; Pardi A; Bax A J Biomol NMR; 2008 Oct; 42(2):99-109. PubMed ID: 18787959 [TBL] [Abstract][Full Text] [Related]
12. A simple genetic algorithm for the optimization of multidomain protein homology models driven by NMR residual dipolar coupling and small angle X-ray scattering data. Mareuil F; Sizun C; Perez J; Schoenauer M; Lallemand JY; Bontems F Eur Biophys J; 2007 Dec; 37(1):95-104. PubMed ID: 17522855 [TBL] [Abstract][Full Text] [Related]
13. REDCRAFT: A computational platform using residual dipolar coupling NMR data for determining structures of perdeuterated proteins in solution. Cole CA; Daigham NS; Liu G; Montelione GT; Valafar H PLoS Comput Biol; 2021 Feb; 17(2):e1008060. PubMed ID: 33524015 [TBL] [Abstract][Full Text] [Related]
14. The dynamic duo: combining NMR and small angle scattering in structural biology. Hennig J; Sattler M Protein Sci; 2014 Jun; 23(6):669-82. PubMed ID: 24687405 [TBL] [Abstract][Full Text] [Related]
15. Uniqueness of models from small-angle scattering data: the impact of a hydration shell and complementary NMR restraints. Kim HS; Gabel F Acta Crystallogr D Biol Crystallogr; 2015 Jan; 71(Pt 1):57-66. PubMed ID: 25615860 [TBL] [Abstract][Full Text] [Related]
16. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Ramelot TA; Raman S; Kuzin AP; Xiao R; Ma LC; Acton TB; Hunt JF; Montelione GT; Baker D; Kennedy MA Proteins; 2009 Apr; 75(1):147-67. PubMed ID: 18816799 [TBL] [Abstract][Full Text] [Related]
17. Assessment of molecular structure using frame-independent orientational restraints derived from residual dipolar couplings. Skrynnikov NR; Kay LE J Biomol NMR; 2000 Nov; 18(3):239-52. PubMed ID: 11142514 [TBL] [Abstract][Full Text] [Related]
18. Refinement of local and long-range structural order in theophylline-binding RNA using (13)C-(1)H residual dipolar couplings and restrained molecular dynamics. Sibille N; Pardi A; Simorre JP; Blackledge M J Am Chem Soc; 2001 Dec; 123(49):12135-46. PubMed ID: 11734011 [TBL] [Abstract][Full Text] [Related]
19. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. Dosset P; Hus JC; Marion D; Blackledge M J Biomol NMR; 2001 Jul; 20(3):223-31. PubMed ID: 11519746 [TBL] [Abstract][Full Text] [Related]
20. Maximizing accuracy of RNA structure in refinement against residual dipolar couplings. Bergonzo C; Grishaev A J Biomol NMR; 2019 Apr; 73(3-4):117-139. PubMed ID: 31049778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]