BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18671222)

  • 1. Combinatorial synthesis of peptide arrays with a laser printer.
    Stadler V; Felgenhauer T; Beyer M; Fernandez S; Leibe K; Güttler S; Gröning M; König K; Torralba G; Hausmann M; Lindenstruth V; Nesterov A; Block I; Pipkorn R; Poustka A; Bischoff FR; Breitling F
    Angew Chem Int Ed Engl; 2008; 47(37):7132-5. PubMed ID: 18671222
    [No Abstract]   [Full Text] [Related]  

  • 2. Photolithographic synthesis of cyclic peptide arrays using a differential deprotection strategy.
    Li S; Marthandan N; Bowerman D; Garner HR; Kodadek T
    Chem Commun (Camb); 2005 Feb; (5):581-3. PubMed ID: 15672142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial synthesis of peptide arrays onto a microchip.
    Beyer M; Nesterov A; Block I; König K; Felgenhauer T; Fernandez S; Leibe K; Torralba G; Hausmann M; Trunk U; Lindenstruth V; Bischoff FR; Stadler V; Breitling F
    Science; 2007 Dec; 318(5858):1888. PubMed ID: 18096799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle-based synthesis of peptide arrays.
    Breitling F; Felgenhauer T; Nesterov A; Lindenstruth V; Stadler V; Bischoff FR
    Chembiochem; 2009 Mar; 10(5):803-8. PubMed ID: 19191248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion.
    Hilpert K; Winkler DF; Hancock RE
    Nat Protoc; 2007; 2(6):1333-49. PubMed ID: 17545971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of metal-chelating peptides on chip for protein array.
    Cheng CW; Lin KC; Pan FM; Sinchaikul S; Wong CH; Su WC; Hsu CH; Chen ST
    Bioorg Med Chem Lett; 2004 Apr; 14(8):1987-90. PubMed ID: 15050643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and application of peptide arrays: quo vadis SPOT technology.
    Volkmer R
    Chembiochem; 2009 Jun; 10(9):1431-42. PubMed ID: 19437530
    [No Abstract]   [Full Text] [Related]  

  • 8. The removal of the t-BOC group by electrochemically generated acid and use of an addressable electrode array for peptide synthesis.
    Maurer K; McShea A; Strathmann M; Dill K
    J Comb Chem; 2005; 7(5):637-40. PubMed ID: 16153055
    [No Abstract]   [Full Text] [Related]  

  • 9. Light-directed maskless synthesis of peptide arrays using photolabile amino acid monomers.
    Bhushan KR
    Org Biomol Chem; 2006 May; 4(10):1857-9. PubMed ID: 16688328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide arrays with a chip.
    Nesterov A; Dörsam E; Cheng YC; Schirwitz C; Märkle F; Löffler F; König K; Stadler V; Bischoff R; Breitling F
    Methods Mol Biol; 2010; 669():109-24. PubMed ID: 20857361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method.
    Winkler DF; Hilpert K; Brandt O; Hancock RE
    Methods Mol Biol; 2009; 570():157-74. PubMed ID: 19649591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPOT synthesis of peptide arrays on self-assembled monolayers and their evaluation as enzyme substrates.
    Laurent N; Haddoub R; Voglmeir J; Wong SC; Gaskell SJ; Flitsch SL
    Chembiochem; 2008 Nov; 9(16):2592-6. PubMed ID: 18821537
    [No Abstract]   [Full Text] [Related]  

  • 13. Large-scale analysis of protein-protein interactions using cellulose-bound peptide arrays.
    Beutling U; Städing K; Stradal T; Frank R
    Adv Biochem Eng Biotechnol; 2008; 110():115-52. PubMed ID: 18418558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and screening of "one-bead one-compound" combinatorial peptide libraries.
    Lam KS; Lehman AL; Song A; Doan N; Enstrom AM; Maxwell J; Liu R
    Methods Enzymol; 2003; 369():298-322. PubMed ID: 14722961
    [No Abstract]   [Full Text] [Related]  

  • 15. Proteochemometric modelling of antibody-antigen interactions using SPOT synthesised peptide arrays.
    Mandrika I; Prusis P; Yahorava S; Shikhagaie M; Wikberg JE
    Protein Eng Des Sel; 2007 Jun; 20(6):301-7. PubMed ID: 17588963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial Peptide Microarray Synthesis Based on Microfluidic Impact Printing.
    Li J; Zhao S; Yang G; Liu R; Xiao W; Disano P; Lam KS; Pan T
    ACS Comb Sci; 2019 Jan; 21(1):6-10. PubMed ID: 30521316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general method for designing combinatorial peptide libraries decodable by amino acid analysis.
    Kofoed J; Reymond JL
    J Comb Chem; 2007; 9(6):1046-52. PubMed ID: 17922554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell and organ printing 1: protein and cell printers.
    Wilson WC; Boland T
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jun; 272(2):491-6. PubMed ID: 12740942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spot technique: synthesis and screening of peptide macroarrays on cellulose membranes.
    Winkler DF; Campbell WD
    Methods Mol Biol; 2008; 494():47-70. PubMed ID: 18726568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using hydroxymethylphenoxy derivates with the SPOT technology to generate peptides with authentic C-termini.
    Ay B; Landgraf K; Streitz M; Fuhrmann S; Volkmer R; Boisguerin P
    Bioorg Med Chem Lett; 2008 Jul; 18(14):4038-43. PubMed ID: 18565750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.