These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18671310)

  • 1. Reaction mechanism of molybdoenzyme formate dehydrogenase.
    Leopoldini M; Chiodo SG; Toscano M; Russo N
    Chemistry; 2008; 14(28):8674-81. PubMed ID: 18671310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster.
    Boyington JC; Gladyshev VN; Khangulov SV; Stadtman TC; Sun PD
    Science; 1997 Feb; 275(5304):1305-8. PubMed ID: 9036855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.
    Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S
    Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.
    Gladyshev VN; Khangulov SV; Axley MJ; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7708-11. PubMed ID: 8052647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdenum and tungsten-dependent formate dehydrogenases.
    Maia LB; Moura JJ; Moura I
    J Biol Inorg Chem; 2015 Mar; 20(2):287-309. PubMed ID: 25476858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.
    Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ
    Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive activation of CO
    Niks D; Hille R
    Methods Enzymol; 2018; 613():277-295. PubMed ID: 30509470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei.
    Plugge CM; Jiang B; de Bok FA; Tsai C; Stams AJ
    Arch Microbiol; 2009 Jan; 191(1):55-61. PubMed ID: 18795263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism.
    Kumar H; Khosraneh M; Bandaru SSM; Schulzke C; Leimkühler S
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of the catalytic mechanism of formate dehydrogenase.
    Castillo R; Oliva M; Martí S; Moliner V
    J Phys Chem B; 2008 Aug; 112(32):10012-22. PubMed ID: 18646819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Kinetics Support a Second Coordination Sphere Mechanism in Metal-Based Formate Dehydrogenase.
    Meneghello M; Uzel A; Broc M; Manuel RR; Magalon A; Léger C; Pereira IAC; Walburger A; Fourmond V
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202212224. PubMed ID: 36465058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism of formate dehydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2018 Dec; 23(8):1243-1254. PubMed ID: 30173398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sulfur shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase.
    Cerqueira NM; Fernandes PA; Gonzalez PJ; Moura JJ; Ramos MJ
    Inorg Chem; 2013 Oct; 52(19):10766-72. PubMed ID: 24066983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.
    Brondino CD; Rivas MG; Romão MJ; Moura JJ; Moura I
    Acc Chem Res; 2006 Oct; 39(10):788-96. PubMed ID: 17042479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.