BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 18671358)

  • 1. Cis-trans photoisomerization of fluorescent-protein chromophores.
    Voliani V; Bizzarri R; Nifosì R; Abbruzzetti S; Grandi E; Viappiani C; Beltram F
    J Phys Chem B; 2008 Aug; 112(34):10714-22. PubMed ID: 18671358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions.
    Yan W; Zhang L; Xie D; Zeng J
    J Phys Chem B; 2007 Dec; 111(50):14055-63. PubMed ID: 18044868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoswitching of E222Q GFP mutants: "concerted" mechanism of chromophore isomerization and protonation.
    Abbruzzetti S; Bizzarri R; Luin S; Nifosì R; Storti B; Viappiani C; Beltram F
    Photochem Photobiol Sci; 2010 Oct; 9(10):1307-19. PubMed ID: 20859582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman study of chromophore states in photochromic fluorescent proteins.
    Luin S; Voliani V; Lanza G; Bizzarri R; Amat P; Tozzini V; Serresi M; Beltram F
    J Am Chem Soc; 2009 Jan; 131(1):96-103. PubMed ID: 19061323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collapse and recovery of green fluorescent protein chromophore emission through topological effects.
    Tolbert LM; Baldridge A; Kowalik J; Solntsev KM
    Acc Chem Res; 2012 Feb; 45(2):171-81. PubMed ID: 21861536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cis-trans photoisomerization properties of GFP chromophore analogs.
    Abbandonato G; Signore G; Nifosì R; Voliani V; Bizzarri R; Beltram F
    Eur Biophys J; 2011 Nov; 40(11):1205-14. PubMed ID: 21879297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic spectroscopy and solvatochromism in the chromophore of GFP and the Y66F mutant.
    Webber NM; Meech SR
    Photochem Photobiol Sci; 2007 Sep; 6(9):976-81. PubMed ID: 17721596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the protein matrix in green fluorescent protein fluorescence.
    Maddalo SL; Zimmer M
    Photochem Photobiol; 2006; 82(2):367-72. PubMed ID: 16613487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein.
    Wilmann PG; Turcic K; Battad JM; Wilce MC; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2006 Nov; 364(2):213-24. PubMed ID: 17010376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic excitations of green fluorescent proteins: protonation states of chromophore model compound in solutions.
    Xie D; Zeng J
    J Comput Chem; 2005 Nov; 26(14):1487-96. PubMed ID: 16092146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed.
    Habuchi S; Cotlet M; Gensch T; Bednarz T; Haber-Pohlmeier S; Rozenski J; Dirix G; Michiels J; Vanderleyden J; Heberle J; De Schryver FC; Hofkens J
    J Am Chem Soc; 2005 Jun; 127(25):8977-84. PubMed ID: 15969574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of the photoactivatable green fluorescent protein.
    Henderson JN; Gepshtein R; Heenan JR; Kallio K; Huppert D; Remington SJ
    J Am Chem Soc; 2009 Apr; 131(12):4176-7. PubMed ID: 19278226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved?
    Loos DC; Habuchi S; Flors C; Hotta J; Wiedenmann J; Nienhaus GU; Hofkens J
    J Am Chem Soc; 2006 May; 128(19):6270-1. PubMed ID: 16683763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins.
    Verkhusha VV; Chudakov DM; Gurskaya NG; Lukyanov S; Lukyanov KA
    Chem Biol; 2004 Jun; 11(6):845-54. PubMed ID: 15217617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models.
    Olsen S; Smith SC
    J Am Chem Soc; 2008 Jul; 130(27):8677-89. PubMed ID: 18597428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching.
    Olsen S; Lamothe K; Martínez TJ
    J Am Chem Soc; 2010 Feb; 132(4):1192-3. PubMed ID: 20067241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable.
    Bizzarri R; Serresi M; Cardarelli F; Abbruzzetti S; Campanini B; Viappiani C; Beltram F
    J Am Chem Soc; 2010 Jan; 132(1):85-95. PubMed ID: 19958004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.