These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18671422)

  • 1. Beta-azidoalanine as an IR probe: application to amyloid Abeta(16-22) aggregation.
    Oh KI; Lee JH; Joo C; Han H; Cho M
    J Phys Chem B; 2008 Aug; 112(33):10352-7. PubMed ID: 18671422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies.
    Choi JH; Oh KI; Cho M
    J Chem Phys; 2008 Nov; 129(17):174512. PubMed ID: 19045363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azido gauche effect on the backbone conformation of β-azidoalanine peptides.
    Oh KI; Kim W; Joo C; Yoo DG; Han H; Hwang GS; Cho M
    J Phys Chem B; 2010 Oct; 114(40):13021-9. PubMed ID: 20849143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional IR spectroscopy reveals a hidden Fermi resonance band in the azido stretch spectrum of β-azidoalanine.
    Park JY; Kwon HJ; Mondal S; Han H; Kwak K; Cho M
    Phys Chem Chem Phys; 2020 Sep; 22(34):19223-19229. PubMed ID: 32812969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectroscopy and dynamics of azide ion in ionic liquid and dimethyl sulfoxide water mixtures.
    Sando GM; Dahl K; Owrutsky JC
    J Phys Chem B; 2007 May; 111(18):4901-9. PubMed ID: 17388412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amide I two-dimensional infrared spectroscopy of beta-hairpin peptides.
    Smith AW; Tokmakoff A
    J Chem Phys; 2007 Jan; 126(4):045109. PubMed ID: 17286519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amide I infrared spectral features characteristic of some untypical conformations appearing in the structures suggested for amyloids.
    Torii H
    J Phys Chem B; 2008 Jul; 112(29):8737-43. PubMed ID: 18582018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of amide-I modes of the alanine dipeptide in D2O.
    Kim YS; Hochstrasser RM
    J Phys Chem B; 2005 Apr; 109(14):6884-91. PubMed ID: 16851775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure.
    Demirdöven N; Cheatum CM; Chung HS; Khalil M; Knoester J; Tokmakoff A
    J Am Chem Soc; 2004 Jun; 126(25):7981-90. PubMed ID: 15212548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using nitrile-derivatized amino acids as infrared probes of local environment.
    Getahun Z; Huang CY; Wang T; De León B; DeGrado WF; Gai F
    J Am Chem Soc; 2003 Jan; 125(2):405-11. PubMed ID: 12517152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding structures of isolated peptides as revealed by gas-phase mid-infrared spectroscopy.
    Bakker JM; Plützer C; Hünig I; Häber T; Compagnon I; von Helden G; Meijer G; Kleinermanns K
    Chemphyschem; 2005 Jan; 6(1):120-8. PubMed ID: 15688655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.
    Maj M; Ahn C; Kossowska D; Park K; Kwak K; Han H; Cho M
    Phys Chem Chem Phys; 2015 May; 17(17):11770-8. PubMed ID: 25869854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently bound azido groups are very specific water sensors, even in hydrogen-bonding environments.
    Wolfshorndl MP; Baskin R; Dhawan I; Londergan CH
    J Phys Chem B; 2012 Jan; 116(3):1172-9. PubMed ID: 22176031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared study of the effect of hydration on the amide I band and aggregation properties of helical peptides.
    Mukherjee S; Chowdhury P; Gai F
    J Phys Chem B; 2007 May; 111(17):4596-602. PubMed ID: 17419612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo refolding and aggregation of insulin in a nonaqueous environment: an inside out protein remake.
    Fulara A; Wojcik S; Loksztejn A; Dzwolak W
    J Phys Chem B; 2008 Jul; 112(29):8744-7. PubMed ID: 18582016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valinomycin and its interaction with ions in organic solvents, detergents, and lipids studied by Fourier transform IR spectroscopy.
    Jackson M; Mantsch HH
    Biopolymers; 1991 Sep; 31(10):1205-12. PubMed ID: 1790298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive multispectroscopic probe for nucleic acids.
    Gai XS; Fenlon EE; Brewer SH
    J Phys Chem B; 2010 Jun; 114(23):7958-66. PubMed ID: 20496915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.