These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18671721)

  • 1. Large-scale simulation of the human arterial tree.
    Grinberg L; Anor T; Madsen JR; Yakhot A; Karniadakis GE
    Clin Exp Pharmacol Physiol; 2009 Feb; 36(2):194-205. PubMed ID: 18671721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the human intracranial arterial tree.
    Grinberg L; Anor T; Cheever E; Madsen JR; Karniadakis GE
    Philos Trans A Math Phys Eng Sci; 2009 Jun; 367(1896):2371-86. PubMed ID: 19414460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runtime visualization of the human arterial tree.
    Insley JA; Papka ME; Dong S; Karniadakis G; Karonis NT
    IEEE Trans Vis Comput Graph; 2007; 13(4):810-21. PubMed ID: 17495339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements.
    Matthys KS; Alastruey J; Peiró J; Khir AW; Segers P; Verdonck PR; Parker KH; Sherwin SJ
    J Biomech; 2007; 40(15):3476-86. PubMed ID: 17640653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice-Boltzmann simulations of three-dimensional fluid flow on a desktop computer.
    Brewster JD
    Anal Chem; 2007 Apr; 79(7):2965-71. PubMed ID: 17319648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries.
    Vignon-Clementel IE; Figueroa CA; Jansen KE; Taylor CA
    Comput Methods Biomech Biomed Engin; 2010 Oct; 13(5):625-40. PubMed ID: 20140798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures.
    Laganà K; Dubini G; Migliavacca F; Pietrabissa R; Pennati G; Veneziani A; Quarteroni A
    Biorheology; 2002; 39(3-4):359-64. PubMed ID: 12122253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An object-oriented modelling framework for the arterial wall.
    Balaguera MI; Briceño JC; Glazier JA
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):135-42. PubMed ID: 19603305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Looking for a general for some modern major models.
    Greene MT
    Endeavour; 2006 Jun; 30(2):55-9. PubMed ID: 16647120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of blood flow in arterial trees.
    Anor T; Grinberg L; Baek H; Madsen JR; Jayaraman MV; Karniadakis GE
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(5):612-623. PubMed ID: 20836052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the large-scale geometry of human coronary arteries.
    Changizi MA; Cherniak C
    Can J Physiol Pharmacol; 2000 Aug; 78(8):603-11. PubMed ID: 10958160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fetal blood flow in branching models of the chorionic arterial vasculature.
    Gordon Z; Eytan O; Jaffa AJ; Elad D
    Ann N Y Acad Sci; 2007 Apr; 1101():250-65. PubMed ID: 17416927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient, three-dimensional, multiscale simulations of the human aortic valve.
    Weinberg EJ; Kaazempur Mofrad MR
    Cardiovasc Eng; 2007 Dec; 7(4):140-55. PubMed ID: 18026835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible algorithm for construction of 3-D vessel networks for use in thermal modeling.
    Van Leeuwen GM; Kotte AN; Lagendijk JJ
    IEEE Trans Biomed Eng; 1998 May; 45(5):596-604. PubMed ID: 9581058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic measurements in human arterial casts, and their correlation with histology and luminal area.
    Friedman MH; Bargeron CB; Hutchins GM; Mark FF; Deters OJ
    J Biomech Eng; 1980 Aug; 102(3):247. PubMed ID: 19530808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling perfusion in the cerebral vasculature.
    David T; Moore S
    Med Eng Phys; 2008 Dec; 30(10):1227-45. PubMed ID: 18980854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Virtual Physiological Human - a European initiative for in silico human modelling -.
    Viceconti M; Clapworthy G; Van Sint Jan S
    J Physiol Sci; 2008 Dec; 58(7):441-6. PubMed ID: 18928640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.