These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 18672252)
1. Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. Stevens J; Blixt O; Chen LM; Donis RO; Paulson JC; Wilson IA J Mol Biol; 2008 Sep; 381(5):1382-94. PubMed ID: 18672252 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Peng W; Bouwman KM; McBride R; Grant OC; Woods RJ; Verheije MH; Paulson JC; de Vries RP J Virol; 2018 May; 92(10):. PubMed ID: 29491160 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation of the effects of single (S221P) and double (S221P and K216E) mutations in the hemagglutinin protein of influenza A H5N1 virus: a study on host receptor specificity. Behera AK; Chandra I; Cherian SS J Biomol Struct Dyn; 2016 Sep; 34(9):2054-67. PubMed ID: 26457729 [TBL] [Abstract][Full Text] [Related]
4. Glycan microarray technologies: tools to survey host specificity of influenza viruses. Stevens J; Blixt O; Paulson JC; Wilson IA Nat Rev Microbiol; 2006 Nov; 4(11):857-64. PubMed ID: 17013397 [TBL] [Abstract][Full Text] [Related]
5. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Yamada S; Suzuki Y; Suzuki T; Le MQ; Nidom CA; Sakai-Tagawa Y; Muramoto Y; Ito M; Kiso M; Horimoto T; Shinya K; Sawada T; Kiso M; Usui T; Murata T; Lin Y; Hay A; Haire LF; Stevens DJ; Russell RJ; Gamblin SJ; Skehel JJ; Kawaoka Y Nature; 2006 Nov; 444(7117):378-82. PubMed ID: 17108965 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Eggink D; Spronken M; van der Woude R; Buzink J; Broszeit F; McBride R; Pawestri HA; Setiawaty V; Paulson JC; Boons GJ; Fouchier RAM; Russell CA; de Jong MD; de Vries RP J Virol; 2020 Jun; 94(13):. PubMed ID: 32321815 [TBL] [Abstract][Full Text] [Related]
7. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Stevens J; Blixt O; Tumpey TM; Taubenberger JK; Paulson JC; Wilson IA Science; 2006 Apr; 312(5772):404-10. PubMed ID: 16543414 [TBL] [Abstract][Full Text] [Related]
8. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. Watanabe Y; Ibrahim MS; Ellakany HF; Kawashita N; Mizuike R; Hiramatsu H; Sriwilaijaroen N; Takagi T; Suzuki Y; Ikuta K PLoS Pathog; 2011 May; 7(5):e1002068. PubMed ID: 21637809 [TBL] [Abstract][Full Text] [Related]
9. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity. Das P; Li J; Royyuru AK; Zhou R J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777 [TBL] [Abstract][Full Text] [Related]
15. Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D: Parsons LM; An Y; Qi L; White MR; van der Woude R; Hartshorn KL; Taubenberger JK; de Vries RP; Cipollo JF J Virol; 2020 Feb; 94(5):. PubMed ID: 31826991 [TBL] [Abstract][Full Text] [Related]
16. H5N1 receptor specificity as a factor in pandemic risk. Paulson JC; de Vries RP Virus Res; 2013 Dec; 178(1):99-113. PubMed ID: 23619279 [TBL] [Abstract][Full Text] [Related]
17. T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3.4.4 H5NX subtype avian influenza viruses. Gao R; Gu M; Liu K; Li Q; Li J; Shi L; Li X; Wang X; Hu J; Liu X; Hu S; Chen S; Peng D; Jiao X; Liu X Vet Microbiol; 2018 Apr; 217():158-166. PubMed ID: 29615249 [TBL] [Abstract][Full Text] [Related]