BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18672355)

  • 41. Development of a membrane strip immunosensor utilizing ruthenium as an electro-chemiluminescent signal generator.
    Yoon CH; Cho JH; Oh HI; Kim MJ; Lee CW; Choi JW; Paek SH
    Biosens Bioelectron; 2003 Dec; 19(4):289-96. PubMed ID: 14615085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode.
    Dai H; Wang Y; Wu X; Zhang L; Chen G
    Biosens Bioelectron; 2009 Jan; 24(5):1230-4. PubMed ID: 18760586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Ru(bpy)2(dcbpy)NHS] labeling/aptamer-based biosensor for the detection of lysozyme by increasing sensitivity with gold nanoparticle amplification.
    Bai J; Wei H; Li B; Song L; Fang L; Lv Z; Zhou W; Wang E
    Chem Asian J; 2008 Nov; 3(11):1935-41. PubMed ID: 18767101
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance.
    Lin TJ; Chung MF
    Biosens Bioelectron; 2009 Jan; 24(5):1213-8. PubMed ID: 18718753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosensor signal amplification of vesicles functionalized with glycolipid for colorimetric detection of Escherichia coli.
    Su YL; Li JR; Jiang L; Cao J
    J Colloid Interface Sci; 2005 Apr; 284(1):114-9. PubMed ID: 15752792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct immobilization of gangliosides onto gold-carboxymethyldextran sensor surfaces by hydrophobic interaction: applications to antibody characterization.
    Catimel B; Scott AM; Lee FT; Hanai N; Ritter G; Welt S; Old LJ; Burgess AW; Nice EC
    Glycobiology; 1998 Sep; 8(9):927-38. PubMed ID: 9675226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Membrane biosensor platforms using nano- and microporous supports.
    Reimhult E; Kumar K
    Trends Biotechnol; 2008 Feb; 26(2):82-9. PubMed ID: 18191259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation between a novel calpastatin biosensor and traditional calpastatin assay techniques.
    Bratcher CL; Grant SA; Stringer RC; Lorenzen CL
    Biosens Bioelectron; 2008 May; 23(10):1429-34. PubMed ID: 18243684
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasensitive electrical detection of nucleic acids by hematin catalysed silver nanoparticle formation in sub-microgapped biosensors.
    Kong JM; Zhang H; Chen XT; Balasubramanian N; Kwong DL
    Biosens Bioelectron; 2008 Dec; 24(4):793-7. PubMed ID: 18692387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene.
    Niazi JH; Kim BC; Ahn JM; Gu MB
    Biosens Bioelectron; 2008 Dec; 24(4):670-5. PubMed ID: 18657410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct, ultrasensitive, and selective optical detection of protein toxins using multivalent interactions.
    Song X; Swanson BI
    Anal Chem; 1999 Jun; 71(11):2097-107. PubMed ID: 10366891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photochemical attachment of biomolecules onto fibre-optics for construction of a chemiluminescent immunosensor.
    Leshem B; Sarfati G; Novoa A; Breslav I; Marks RS
    Luminescence; 2004; 19(2):69-77. PubMed ID: 15098206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid mobility and molecular binding in fluid lipid membranes.
    Yamazaki V; Sirenko O; Schafer RJ; Groves JT
    J Am Chem Soc; 2005 Mar; 127(9):2826-7. PubMed ID: 15740098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrated biosensor systems for ethanol analysis.
    Alhadeff EM; Salgado AM; Cós O; Pereira N; Valero F; Valdman B
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):129-36. PubMed ID: 18421593
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection.
    Fine T; Leskinen P; Isobe T; Shiraishi H; Morita M; Marks RS; Virta M
    Biosens Bioelectron; 2006 Jun; 21(12):2263-9. PubMed ID: 16460925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy.
    Moran-Mirabal JM; Edel JB; Meyer GD; Throckmorton D; Singh AK; Craighead HG
    Biophys J; 2005 Jul; 89(1):296-305. PubMed ID: 15833994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments.
    Kim JP; Lee BY; Hong S; Sim SJ
    Anal Biochem; 2008 Oct; 381(2):193-8. PubMed ID: 18640089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody.
    Haddour N; Chauvin J; Gondran C; Cosnier S
    J Am Chem Soc; 2006 Aug; 128(30):9693-8. PubMed ID: 16866523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J; Torta F; Sligar SG; Roepstorff P
    Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pesticide detection with a liposome-based nano-biosensor.
    Vamvakaki V; Chaniotakis NA
    Biosens Bioelectron; 2007 Jun; 22(12):2848-53. PubMed ID: 17223333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.