These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18672424)

  • 1. Dynamic 3-D virtual fixtures for minimally invasive beating heart procedures.
    Ren J; Patel RV; McIsaac KA; Guiraudon G; Peters TM
    IEEE Trans Med Imaging; 2008 Aug; 27(8):1061-70. PubMed ID: 18672424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.
    Szpala S; Wierzbicki M; Guiraudon G; Peters TM
    IEEE Trans Med Imaging; 2005 Sep; 24(9):1207-15. PubMed ID: 16156358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards robust 3D visual tracking for motion compensation in beating heart surgery.
    Richa R; Bó AP; Poignet P
    Med Image Anal; 2011 Jun; 15(3):302-15. PubMed ID: 21277821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries.
    Wierzbicki M; Drangova M; Guiraudon G; Peters T
    Med Image Anal; 2004 Sep; 8(3):387-401. PubMed ID: 15450231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-rigid reconstruction of the beating heart surface for minimally invasive cardiac surgery.
    Hu M; Penney GP; Rueckert D; Edwards PJ; Bello F; Casula R; Figl M; Hawkes DJ
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):34-42. PubMed ID: 20425968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Registration and tracking to integrate X-ray and MR images in an XMR facility.
    Rhode KS; Hill DL; Edwards PJ; Hipwell J; Rueckert D; Sanchez-Ortiz G; Hegde S; Rahunathan V; Razavi R
    IEEE Trans Med Imaging; 2003 Nov; 22(11):1369-78. PubMed ID: 14606671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic active constraints for hyper-redundant flexible robots.
    Kwok KW; Mylonas GP; Sun LW; Lerotic M; Clark J; Athanasiou T; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):410-7. PubMed ID: 20426014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-D image guidance for minimally invasive robotic coronary artery bypass.
    Chiu AM; Dey D; Drangova M; Boyd WD; Peters TM
    Heart Surg Forum; 2000; 3(3):224-31. PubMed ID: 11074977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technology improvements for image-guided and minimally invasive spine procedures.
    Cleary K; Clifford M; Stoianovici D; Freedman M; Mun SK; Watson V
    IEEE Trans Inf Technol Biomed; 2002 Dec; 6(4):249-61. PubMed ID: 15224839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented reality-assisted bypass surgery: embracing minimal invasiveness.
    Cabrilo I; Schaller K; Bijlenga P
    World Neurosurg; 2015 Apr; 83(4):596-602. PubMed ID: 25527874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial motion constraints for robot assisted suturing using virtual fixtures.
    Kapoor A; Li M; Taylor RH
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):89-96. PubMed ID: 16685947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A system for real-time XMR guided cardiovascular intervention.
    Rhode KS; Sermesant M; Brogan D; Hegde S; Hipwell J; Lambiase P; Rosenthal E; Bucknall C; Qureshi SA; Gill JS; Razavi R; Hill DL
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1428-40. PubMed ID: 16279080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery.
    Neumann D; Grbic S; John M; Navab N; Hornegger J; Ionasec R
    IEEE Trans Med Imaging; 2015 Jan; 34(1):49-60. PubMed ID: 25095250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography.
    Fischer G; Stadie A; Schwandt E; Gawehn J; Boor S; Marx J; Oertel J
    Neurosurg Focus; 2009 May; 26(5):E20. PubMed ID: 19408999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoscopic scene flow for robotic assisted minimally invasive surgery.
    Stoyanov D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):479-86. PubMed ID: 23285586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of image motion for robotic assisted beating heart surgery.
    Stoyanov D; Yang GZ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):417-24. PubMed ID: 18051086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The ECG-gated 4-row multidetector CT of the heart in preoperative imaging minimal invasive coronary artery bypass grafting].
    Begemann PG; Arnold M; Detter C; Boehm DH; Ittrich H; Koops A; Reichenspurner H; Adam G; Weber C
    Rofo; 2005 Aug; 177(8):1084-92. PubMed ID: 16021540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformable multimodal registration for navigation in beating-heart cardiac surgery.
    Peoples JJ; Bisleri G; Ellis RE
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):955-966. PubMed ID: 30888597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery.
    Mylonas GP; Kwok KW; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):676-83. PubMed ID: 18982663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality system for planning minimally invasive neurosurgery. Technical note.
    Stadie AT; Kockro RA; Reisch R; Tropine A; Boor S; Stoeter P; Perneczky A
    J Neurosurg; 2008 Feb; 108(2):382-94. PubMed ID: 18240940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.