These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18672919)

  • 21. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.
    Petrofsky J; Suh HJ; Fish A; Hernandez V; Abdo A; Collins K; Mendoza E; Yang TN
    J Med Eng Technol; 2008; 32(5):371-84. PubMed ID: 18821415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical bias dependent photochemical functionalization of diamond surfaces.
    Nichols BM; Metz KM; Tse KY; Butler JE; Russell JN; Hamers RJ
    J Phys Chem B; 2006 Aug; 110(33):16535-43. PubMed ID: 16913787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a membrane-based, electrochemically driven pumping system using aqueous electrolyte solutions.
    Norman MA; Evans CE; Fuoco AR; Noble RD; Koval CA
    Anal Chem; 2005 Oct; 77(19):6374-80. PubMed ID: 16194102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.
    Mansouri A; Bhattacharjee S; Kostiuk LW
    J Phys Chem B; 2007 Nov; 111(44):12834-43. PubMed ID: 17929961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.
    Yuan Q; Wu J
    Biomed Microdevices; 2013 Feb; 15(1):125-33. PubMed ID: 22932955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling two-dimensional movement of microparticles over an electrode array surface.
    Lin JT; Yeow JT; Wan W
    Biomed Microdevices; 2009 Feb; 11(1):193-200. PubMed ID: 18815885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment.
    Menshykau D; Huang XJ; Rees NV; del Campo FJ; Muñoz FX; Compton RG
    Analyst; 2009 Feb; 134(2):343-8. PubMed ID: 19173060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis.
    González A; Ramos A; García-Sánchez P; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016320. PubMed ID: 20365473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zig-zag arrangement of four electrodes for ac electro-osmotic micropumps.
    Hrdlička J; Cervenka P; Přibyl M; Snita D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016307. PubMed ID: 21867304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining zeta Potential and Surface Conductance by Monitoring the Current in Electro-osmotic Flow.
    Arulanandam S; Li D
    J Colloid Interface Sci; 2000 May; 225(2):421-428. PubMed ID: 11254281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of an ac electro-osmotic pump with step microelectrodes.
    Kim BJ; Lee SH; Rezazadeh S; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056302. PubMed ID: 21728642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical and morphological changes on platinum microelectrode surfaces in AC and DC fields with biological buffer solutions.
    Gencoglu A; Minerick A
    Lab Chip; 2009 Jul; 9(13):1866-73. PubMed ID: 19532961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump.
    Gregersen MM; Olesen LH; Brask A; Hansen MF; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056305. PubMed ID: 18233754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrokinetic vortices and traveling waves in nondilute colloidal dispersions.
    Pérez CL; Posner JD
    Langmuir; 2010 Jun; 26(12):9261-8. PubMed ID: 20359179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electro-osmotic streaming on application of traveling-wave electric fields.
    Cahill BP; Heyderman LJ; Gobrecht J; Stemmer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036305. PubMed ID: 15524631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ac electrokinetic micropumps: the effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance.
    Olesen LH; Bruus H; Ajdari A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056313. PubMed ID: 16803043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.