BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18673560)

  • 21. Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast.
    Lyons TJ; Gasch AP; Gaither LA; Botstein D; Brown PO; Eide DJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7957-62. PubMed ID: 10884426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis.
    Milner MJ; Pence NS; Liu J; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):271-80. PubMed ID: 24433538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput screen for identifying small molecules that target fungal zinc homeostasis.
    Simm C; Luan CH; Weiss E; O'Halloran T
    PLoS One; 2011; 6(9):e25136. PubMed ID: 21980385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zinc sensing and regulation in yeast model systems.
    Wilson S; Bird AJ
    Arch Biochem Biophys; 2016 Dec; 611():30-36. PubMed ID: 26940262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
    Zhao H; Eide DJ
    Mol Cell Biol; 1997 Sep; 17(9):5044-52. PubMed ID: 9271382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET.
    Qiao W; Mooney M; Bird AJ; Winge DR; Eide DJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8674-9. PubMed ID: 16720702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator.
    Bird A; Evans-Galea MV; Blankman E; Zhao H; Luo H; Winge DR; Eide DJ
    J Biol Chem; 2000 May; 275(21):16160-6. PubMed ID: 10747942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding.
    Evans-Galea MV; Blankman E; Myszka DG; Bird AJ; Eide DJ; Winge DR
    Biochemistry; 2003 Feb; 42(4):1053-61. PubMed ID: 12549926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function.
    Bird AJ; McCall K; Kramer M; Blankman E; Winge DR; Eide DJ
    EMBO J; 2003 Oct; 22(19):5137-46. PubMed ID: 14517251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metalloregulation of yeast membrane steroid receptor homologs.
    Lyons TJ; Villa NY; Regalla LM; Kupchak BR; Vagstad A; Eide DJ
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5506-11. PubMed ID: 15060275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen.
    Waters BM; Eide DJ
    J Biol Chem; 2002 Sep; 277(37):33749-57. PubMed ID: 12095998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A second iron-regulatory system in yeast independent of Aft1p.
    Rutherford JC; Jaron S; Ray E; Brown PO; Winge DR
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14322-7. PubMed ID: 11734641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multicopy suppression of oxidant-sensitive eos1 mutation by IZH2 in Saccharomyces cerevisiae and the involvement of Eos1 in zinc homeostasis.
    Nakamura T; Takahashi S; Takagi H; Shima J
    FEMS Yeast Res; 2010 May; 10(3):259-69. PubMed ID: 20146743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc starvation induces a stress response in Saccharomyces cerevisiae that is mediated by the Msn2p and Msn4p transcriptional activators.
    Gauci VJ; Beckhouse AG; Lyons V; Beh EJ; Rogers PJ; Dawes IW; Higgins VJ
    FEMS Yeast Res; 2009 Dec; 9(8):1187-95. PubMed ID: 19702872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae.
    Schüller C; Mamnun YM; Wolfger H; Rockwell N; Thorner J; Kuchler K
    Mol Biol Cell; 2007 Dec; 18(12):4932-44. PubMed ID: 17881724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast.
    MacDiarmid CW; Taggart J; Kerdsomboon K; Kubisiak M; Panascharoen S; Schelble K; Eide DJ
    J Biol Chem; 2013 Oct; 288(43):31313-27. PubMed ID: 24022485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of zinc deprivation on the lipid metabolism of budding yeast.
    Singh N; Yadav KK; Rajasekharan R
    Curr Genet; 2017 Dec; 63(6):977-982. PubMed ID: 28500379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae.
    Steiger MG; Patzschke A; Holz C; Lang C; Causon T; Hann S; Mattanovich D; Sauer M
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28505300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae.
    Galeote VA; Alexandre H; Bach B; Delobel P; Dequin S; Blondin B
    Curr Genet; 2007 Aug; 52(2):55-63. PubMed ID: 17594096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.