BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18674543)

  • 1. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
    Evans MS; Sander IM; Clark PL
    J Mol Biol; 2008 Nov; 383(3):683-92. PubMed ID: 18674543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates.
    Clark PL; King J
    J Biol Chem; 2001 Jul; 276(27):25411-20. PubMed ID: 11319217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reversibly unfolding fragment of P22 tailspike protein with native structure: the isolated beta-helix domain.
    Miller S; Schuler B; Seckler R
    Biochemistry; 1998 Jun; 37(25):9160-8. PubMed ID: 9636063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity and steric strain in a parallel beta-helix: rational mutations in the P22 tailspike protein.
    Schuler B; Fürst F; Osterroth F; Steinbacher S; Huber R; Seckler R
    Proteins; 2000 Apr; 39(1):89-101. PubMed ID: 10737931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein.
    Benton CB; King J; Clark PL
    Biochemistry; 2002 Apr; 41(16):5093-103. PubMed ID: 11955057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin.
    Weigele PR; Haase-Pettingell C; Campbell PG; Gossard DC; King J
    J Mol Biol; 2005 Dec; 354(5):1103-17. PubMed ID: 16289113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin.
    Simkovsky R; King J
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3575-80. PubMed ID: 16505375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nascent chains: folding and chaperone interaction during elongation on ribosomes.
    Tokatlidis K; Friguet B; Deville-Bonne D; Baleux F; Fedorov AN; Navon A; Djavadi-Ohaniance L; Goldberg ME
    Philos Trans R Soc Lond B Biol Sci; 1995 Apr; 348(1323):89-95. PubMed ID: 7770491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P22 tailspike folding mutants revisited: effects on the thermodynamic stability of the isolated beta-helix domain.
    Schuler B; Seckler R
    J Mol Biol; 1998 Aug; 281(2):227-34. PubMed ID: 9698543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies.
    Friguet B; Djavadi-Ohaniance L; King J; Goldberg ME
    J Biol Chem; 1994 Jun; 269(22):15945-9. PubMed ID: 7515066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies.
    Speed MA; Morshead T; Wang DI; King J
    Protein Sci; 1997 Jan; 6(1):99-108. PubMed ID: 9007981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes.
    Reich L; Becker M; Seckler R; Weikl TR
    Biophys Chem; 2009 May; 141(2-3):186-92. PubMed ID: 19254821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization.
    Kreisberg JF; Betts SD; Haase-Pettingell C; King J
    Protein Sci; 2002 Apr; 11(4):820-30. PubMed ID: 11910025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein.
    Seckler R
    J Struct Biol; 1998; 122(1-2):216-22. PubMed ID: 9724623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike beta-helix domain.
    Schuler B; Rachel R; Seckler R
    J Biol Chem; 1999 Jun; 274(26):18589-96. PubMed ID: 10373469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side-chain specificity at three temperature-sensitive folding mutation sites of P22 tailspike protein.
    Lee SC; Yu MH
    Biochem Biophys Res Commun; 1997 Apr; 233(3):857-62. PubMed ID: 9168948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.
    Betts SD; King J
    Protein Sci; 1998 Jul; 7(7):1516-23. PubMed ID: 9684883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol.
    Mishra R; Bhat R; Seckler R
    Biol Chem; 2007 Aug; 388(8):797-804. PubMed ID: 17655498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike.
    Betts S; King J
    Structure; 1999 Jun; 7(6):R131-9. PubMed ID: 10404587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates.
    Jain M; Evans MS; King J; Clark PL
    J Biol Chem; 2005 Jun; 280(24):23032-40. PubMed ID: 15833745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.