These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 18674592)

  • 1. Error-specific medial cortical and subcortical activity during the stop signal task: a functional magnetic resonance imaging study.
    Li CS; Yan P; Chao HH; Sinha R; Paliwal P; Constable RT; Zhang S; Lee TW
    Neuroscience; 2008 Sep; 155(4):1142-51. PubMed ID: 18674592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of post-error slowing during a stop signal task: a functional magnetic resonance imaging study.
    Li CS; Huang C; Yan P; Paliwal P; Constable RT; Sinha R
    J Cogn Neurosci; 2008 Jun; 20(6):1021-9. PubMed ID: 18211230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct neural processes support post-success and post-error slowing in the stop signal task.
    Zhang Y; Ide JS; Zhang S; Hu S; Valchev NS; Tang X; Li CR
    Neuroscience; 2017 Aug; 357():273-284. PubMed ID: 28627420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociable processes of cognitive control during error and non-error conflicts: a study of the stop signal task.
    Hendrick OM; Ide JS; Luo X; Li CS
    PLoS One; 2010 Oct; 5(10):e13155. PubMed ID: 20949134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of response conflict on error processing: evidence from event-related fMRI.
    Wittfoth M; Küstermann E; Fahle M; Herrmann M
    Brain Res; 2008 Feb; 1194():118-29. PubMed ID: 18177843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional networks for cognitive control in a stop signal task: independent component analysis.
    Zhang S; Li CS
    Hum Brain Mapp; 2012 Jan; 33(1):89-104. PubMed ID: 21365716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning from errors: error-related neural activity predicts improvements in future inhibitory control performance.
    Hester R; Madeley J; Murphy K; Mattingley JB
    J Neurosci; 2009 Jun; 29(22):7158-65. PubMed ID: 19494138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood.
    Aarts E; Roelofs A; van Turennout M
    J Neurosci; 2008 Apr; 28(18):4671-8. PubMed ID: 18448644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time.
    Zhang S; Tsai SJ; Hu S; Xu J; Chao HH; Calhoun VD; Li CS
    Hum Brain Mapp; 2015 Sep; 36(9):3289-302. PubMed ID: 26089095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling conflict and error in the medial frontal cortex.
    Mayer AR; Teshiba TM; Franco AR; Ling J; Shane MS; Stephen JM; Jung RE
    Hum Brain Mapp; 2012 Dec; 33(12):2843-55. PubMed ID: 21976411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
    Aarts E; Roelofs A; van Turennout M
    Neuropsychologia; 2009 Aug; 47(10):2089-99. PubMed ID: 19467359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty-dependent activity within the ventral striatum predicts task-related changes in response strategy.
    Buzzell GA; Roberts DM; Fedota JR; Thompson JC; Parasuraman R; McDonald CG
    Cogn Affect Behav Neurosci; 2016 Apr; 16(2):219-33. PubMed ID: 26453582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task.
    Töllner T; Wang Y; Makeig S; Müller HJ; Jung TP; Gramann K
    J Neurosci; 2017 Mar; 37(9):2504-2515. PubMed ID: 28137968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greater activation of the "default" brain regions predicts stop signal errors.
    Li CS; Yan P; Bergquist KL; Sinha R
    Neuroimage; 2007 Nov; 38(3):640-8. PubMed ID: 17884586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brain.
    Jiang J; Egner T
    Cereb Cortex; 2014 Jul; 24(7):1793-805. PubMed ID: 23402762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cerebellar thalamic cortical circuit for error-related cognitive control.
    Ide JS; Li CS
    Neuroimage; 2011 Jan; 54(1):455-64. PubMed ID: 20656038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing.
    King JA; Korb FM; von Cramon DY; Ullsperger M
    J Neurosci; 2010 Sep; 30(38):12759-69. PubMed ID: 20861380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-modal investigation of behavioral adjustment: post-error slowing is associated with white matter characteristics.
    Fjell AM; Westlye LT; Amlien IK; Walhovd KB
    Neuroimage; 2012 May; 61(1):195-205. PubMed ID: 22433658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficits in default mode network activity preceding error in cocaine dependent individuals.
    Bednarski SR; Zhang S; Hong KI; Sinha R; Rounsaville BJ; Li CS
    Drug Alcohol Depend; 2011 Dec; 119(3):e51-7. PubMed ID: 21703783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surprise and error: common neuronal architecture for the processing of errors and novelty.
    Wessel JR; Danielmeier C; Morton JB; Ullsperger M
    J Neurosci; 2012 May; 32(22):7528-37. PubMed ID: 22649231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.