These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18674601)

  • 1. Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning.
    Baumbauer KM; Hoy KC; Huie JR; Hughes AJ; Woller SA; Puga DA; Setlow B; Grau JW
    Neuroscience; 2008 Sep; 155(4):1030-47. PubMed ID: 18674601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixed spaced stimulation restores adaptive plasticity within the spinal cord: Identifying the eliciting conditions.
    Baumbauer KM; Turtle JD; Grau JW
    Physiol Behav; 2017 May; 174():1-9. PubMed ID: 28238778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Timing in the absence of supraspinal input II: regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor, BDNF release, and protein synthesis.
    Baumbauer KM; Huie JR; Hughes AJ; Grau JW
    J Neurosci; 2009 Nov; 29(46):14383-93. PubMed ID: 19923273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal regularity determines the impact of electrical stimulation on tactile reactivity and response to capsaicin in spinally transected rats.
    Baumbauer KM; Lee KH; Puga DA; Woller SA; Hughes AJ; Grau JW
    Neuroscience; 2012 Dec; 227():119-33. PubMed ID: 23036621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing in the absence of supraspinal input III: regularly spaced cutaneous stimulation prevents and reverses the spinal learning deficit produced by peripheral inflammation.
    Baumbauer KM; Grau JW
    Behav Neurosci; 2011 Feb; 125(1):37-45. PubMed ID: 21319886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-derived neurotrophic factor promotes adaptive plasticity within the spinal cord and mediates the beneficial effects of controllable stimulation.
    Huie JR; Garraway SM; Baumbauer KM; Hoy KC; Beas BS; Montgomery KS; Bizon JL; Grau JW
    Neuroscience; 2012 Jan; 200():74-90. PubMed ID: 22056599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumental learning within the spinal cord: V. Evidence the behavioral deficit observed after noncontingent nociceptive stimulation reflects an intraspinal modification.
    Joynes RL; Ferguson AR; Crown ED; Patton BC; Grau JW
    Behav Brain Res; 2003 May; 141(2):159-70. PubMed ID: 12742252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral inflammation undermines the plasticity of the isolated spinal cord.
    Hook MA; Huie JR; Grau JW
    Behav Neurosci; 2008 Feb; 122(1):233-49. PubMed ID: 18298266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrathecal infusions of anisomycin impact the learning deficit but not the learning effect observed in spinal rats that have received instrumental training.
    Baumbauer KM; Young EE; Hoy KC; France JL; Joynes RL
    Behav Brain Res; 2006 Oct; 173(2):299-309. PubMed ID: 16914213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response.
    Hoy KC; Strain MM; Turtle JD; Lee KH; Huie JR; Hartman JJ; Tarbet MM; Harlow ML; Magnuson DSK; Grau JW
    J Neurosci; 2020 Nov; 40(48):9186-9209. PubMed ID: 33097637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nociceptive plasticity inhibits adaptive learning in the spinal cord.
    Ferguson AR; Crown ED; Grau JW
    Neuroscience; 2006 Aug; 141(1):421-31. PubMed ID: 16678969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrumental learning within the spinal cord: IV. Induction and retention of the behavioral deficit observed after noncontingent shock.
    Crown ED; Ferguson AR; Joynes RL; Grau JW
    Behav Neurosci; 2002 Dec; 116(6):1032-51. PubMed ID: 12492302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord.
    Hoy KC; Huie JR; Grau JW
    Behav Brain Res; 2013 Jan; 236(1):319-326. PubMed ID: 22982187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation.
    Crown ED; Grau JW
    Exp Neurol; 2005 Nov; 196(1):164-76. PubMed ID: 16139268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncontrollable stimulation undermines recovery after spinal cord injury.
    Grau JW; Washburn SN; Hook MA; Ferguson AR; Crown ED; Garcia G; Bolding KA; Miranda RC
    J Neurotrauma; 2004 Dec; 21(12):1795-817. PubMed ID: 15684770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure to intermittent nociceptive stimulation under pentobarbital anesthesia disrupts spinal cord function in rats.
    Washburn SN; Patton BC; Ferguson AR; Hudson KL; Grau JW
    Psychopharmacology (Berl); 2007 Jun; 192(2):243-52. PubMed ID: 17297638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid regulation of spinal cord plasticity: evidence the kappa-2 opioid receptor agonist GR89696 inhibits learning within the rat spinal cord.
    Washburn SN; Maultsby ML; Puga DA; Grau JW
    Neurobiol Learn Mem; 2008 Jan; 89(1):1-16. PubMed ID: 17983769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrumental learning within the spinal cord. II. Evidence for central mediation.
    Crown ED; Ferguson AR; Joynes RL; Grau JW
    Physiol Behav; 2002 Nov; 77(2-3):259-67. PubMed ID: 12419402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression.
    Gómez-Pinilla F; Huie JR; Ying Z; Ferguson AR; Crown ED; Baumbauer KM; Edgerton VR; Grau JW
    Neuroscience; 2007 Sep; 148(4):893-906. PubMed ID: 17719180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrumental learning within the spinal cord: VI. The NMDA receptor antagonist, AP5, disrupts the acquisition and maintenance of an acquired flexion response.
    Joynes RL; Janjua K; Grau JW
    Behav Brain Res; 2004 Oct; 154(2):431-8. PubMed ID: 15313031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.