These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18675268)

  • 1. Presbyopia. Emerging from a blur towards an understanding of the molecular basis for this most common eye condition.
    Truscott RJ
    Exp Eye Res; 2009 Feb; 88(2):241-7. PubMed ID: 18675268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presbyopia and cataract: a question of heat and time.
    Truscott RJ; Zhu X
    Prog Retin Eye Res; 2010 Nov; 29(6):487-99. PubMed ID: 20472092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility.
    Heys KR; Friedrich MG; Truscott RJ
    Aging Cell; 2007 Dec; 6(6):807-15. PubMed ID: 17973972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures.
    Gilmartin B
    Ophthalmic Physiol Opt; 1995 Sep; 15(5):431-7. PubMed ID: 8524570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presbyopia: the first stage of nuclear cataract?
    McGinty SJ; Truscott RJ
    Ophthalmic Res; 2006; 38(3):137-48. PubMed ID: 16397406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?
    Heys KR; Cram SL; Truscott RJ
    Mol Vis; 2004 Dec; 10():956-63. PubMed ID: 15616482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oxidation of the proteins of the crystalline lens in senescence and in cataract].
    Auricchio G; Testa M; Bocci N; Fiore C; CalabrĂ² S
    Boll Ocul; 1968 Jan; 47(1):3-15. PubMed ID: 5703755
    [No Abstract]   [Full Text] [Related]  

  • 8. [Anything new concerning the human lens and senile cataract (author's transl)].
    Nordmann J
    J Fr Ophtalmol; 1981; 4(5):359-73. PubMed ID: 6273466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in the kinetics of water transport in normal human lenses.
    Moffat BA; Landman KA; Truscott RJ; Sweeney MH; Pope JM
    Exp Eye Res; 1999 Dec; 69(6):663-9. PubMed ID: 10620395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Alpha-Glucosyl-Hesperidin Consumption on Lens Sclerosis and Presbyopia.
    Nakazawa Y; Doki Y; Sugiyama Y; Kobayashi R; Nagai N; Morisita N; Endo S; Funakoshi-Tago M; Tamura H
    Cells; 2021 Feb; 10(2):. PubMed ID: 33673261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the water, protein, and glutathione contents of the lens in the course of galactose cataract development in rats.
    Sippel TO
    Invest Ophthalmol; 1966 Dec; 5(6):568-75. PubMed ID: 5927444
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract.
    Korlimbinis A; Truscott RJ
    Biochemistry; 2006 Feb; 45(6):1950-60. PubMed ID: 16460042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cataract classification using serial examinations in the age-related eye disease study: age-related eye disease study report no. 24.
    Sperduto RD; Clemons TE; Lindblad AS; Ferris FL;
    Am J Ophthalmol; 2008 Mar; 145(3):504-8. PubMed ID: 18201681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].
    Lubatschowski H; Schumacher S; Wegener A; Fromm M; Oberheide U; Hoffmann H; Gerten G
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):984-90. PubMed ID: 20108193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Energy metabolism of the crystalline lens in senile cataract].
    Maione M; Maraini G
    Bull Mem Soc Fr Ophtalmol; 1968; 81():303-10. PubMed ID: 5759752
    [No Abstract]   [Full Text] [Related]  

  • 16. Free and bound water in normal and cataractous human lenses.
    Heys KR; Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in the accommodative force on the lens of the human eye with age.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted knockout of the mouse betaB2-crystallin gene (Crybb2) induces age-related cataract.
    Zhang J; Li J; Huang C; Xue L; Peng Y; Fu Q; Gao L; Zhang J; Li W
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5476-83. PubMed ID: 18719080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Aging of the crystalline lens and presbyopia].
    Beers AP; van der Heijde GL; Dubbelman M
    Tijdschr Gerontol Geriatr; 1998 Aug; 29(4):185-8. PubMed ID: 9746933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of the Mechanisms of Maintaining the Transparency of the Lens and Treatment of Its Related Diseases for Making Anti-cataract and/or Anti-presbyopia Drugs].
    Nakazawa Y
    Yakugaku Zasshi; 2020; 140(9):1095-1099. PubMed ID: 32879241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.