BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18675785)

  • 1. Ribosomal frameshifting in response to hypomodified tRNAs in Xenopus oocytes.
    Carlson BA; Lee BJ; Hatfield DL
    Biochem Biophys Res Commun; 2008 Oct; 375(1):86-90. PubMed ID: 18675785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer RNA modification status influences retroviral ribosomal frameshifting.
    Carlson BA; Kwon SY; Chamorro M; Oroszlan S; Hatfield DL; Lee BJ
    Virology; 1999 Mar; 255(1):2-8. PubMed ID: 10049815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-Methylguanosine in place of Y base at position 37 in phenylalanine tRNA is responsible for its shiftiness in retroviral ribosomal frameshifting.
    Carlson BA; Mushinski JF; Henderson DW; Kwon SY; Crain PF; Lee BJ; Hatfield DL
    Virology; 2001 Jan; 279(1):130-5. PubMed ID: 11145896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast asparagine (Asn) tRNA without Q base promotes eukaryotic frameshifting more efficiently than mammalian Asn tRNAs with or without Q base.
    Carlson BA; Kwon SY; Lee BJ; Hatfield D
    Mol Cells; 2000 Feb; 10(1):113-8. PubMed ID: 10774757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of frameshifting at UUU-pyrimidine sites.
    Schwartz R; Curran JF
    Nucleic Acids Res; 1997 May; 25(10):2005-11. PubMed ID: 9115369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Q-base of asparaginyl-tRNA is dispensable for efficient -1 ribosomal frameshifting in eukaryotes.
    Marczinke B; Hagervall T; Brierley I
    J Mol Biol; 2000 Jan; 295(2):179-91. PubMed ID: 10623518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a tRNA base modification and its precursors in frameshifting in eukaryotes.
    Waas WF; Druzina Z; Hanan M; Schimmel P
    J Biol Chem; 2007 Sep; 282(36):26026-34. PubMed ID: 17623669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanosine modifications in runoff transcripts of synthetic transfer RNA-Phe genes microinjected into Xenopus oocytes.
    Grosjean H; Droogmans L; Giégé R; Uhlenbeck OC
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):267-73. PubMed ID: 2207154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV.
    Hatfield D; Feng YX; Lee BJ; Rein A; Levin JG; Oroszlan S
    Virology; 1989 Dec; 173(2):736-42. PubMed ID: 2556852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor-specific, hypomodified phenylalanyl-tRNA is utilized in translation in preference to the fully modified isoacceptor of normal cells.
    Smith DW; McNamara AL; Mushinski JF; Hatfield DL
    J Biol Chem; 1985 Jan; 260(1):147-51. PubMed ID: 3843839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence.
    Haumont E; Droogmans L; Grosjean H
    Eur J Biochem; 1987 Oct; 168(1):219-25. PubMed ID: 3117541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast.
    Sundararajan A; Michaud WA; Qian Q; Stahl G; Farabaugh PJ
    Mol Cell; 1999 Dec; 4(6):1005-15. PubMed ID: 10635325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microinjection of tRNA into amphibian oocytes.
    Allende JE; Gatica M; Tarrago A; Bravo R; Allende CC
    Arch Biol Med Exp; 1976 Dec; 10(1-3):78-84. PubMed ID: 1036012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptidyl-tRNAs promote translational frameshifting.
    Vimaladithan A; Pande S; Zhao H; Farabaugh PJ
    Nucleic Acids Symp Ser; 1995; (33):190-3. PubMed ID: 8643366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special peptidyl-tRNA molecules can promote translational frameshifting without slippage.
    Vimaladithan A; Farabaugh PJ
    Mol Cell Biol; 1994 Dec; 14(12):8107-16. PubMed ID: 7969148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of post-transcriptional base modifications on the site-specific function of transfer RNA in eukaryote translation.
    Smith DW; Hatfield DL
    J Mol Biol; 1986 Jun; 189(4):663-71. PubMed ID: 3783686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression.
    Rodriguez EA; Lester HA; Dougherty DA
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8650-5. PubMed ID: 16728509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product?
    Dinan AM; Atkins JF; Firth AE
    Biol Direct; 2017 Oct; 12(1):24. PubMed ID: 29037253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.