These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18676299)

  • 1. Predicting coronary artery disease using different artificial neural network models.
    Colak MC; Colak C; Kocatürk H; Sağiroğlu S; Barutçu I
    Anadolu Kardiyol Derg; 2008 Aug; 8(4):249-54. PubMed ID: 18676299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of left ventricular ejection fraction in patients with coronary artery disease based on an analysis of perfusion patterns at rest. Assessment by an artificial neural network.
    Stefaniak B; Cholewiński W; Tarkowska A
    Nucl Med Rev Cent East Eur; 2004; 7(1):7-12. PubMed ID: 15318304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a neural network to improve nodal staging accuracy with 18F-FDG PET in non-small cell lung cancer.
    Vesselle H; Turcotte E; Wiens L; Haynor D
    J Nucl Med; 2003 Dec; 44(12):1918-26. PubMed ID: 14660717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease.
    Allison JS; Heo J; Iskandrian AE
    Am J Cardiol; 2005 Jan; 95(2):178-81. PubMed ID: 15642548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial neural network for predicting the incidence of radiation pneumonitis.
    Su M; Miften M; Whiddon C; Sun X; Light K; Marks L
    Med Phys; 2005 Feb; 32(2):318-25. PubMed ID: 15789575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An artificial neural network (ANN)-based lung-tumor motion predictor for intrafractional MR tumor tracking.
    Yun J; Mackenzie M; Rathee S; Robinson D; Fallone BG
    Med Phys; 2012 Jul; 39(7):4423-33. PubMed ID: 22830775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks in nuclear medicine.
    Swietlik D; Bandurski T; Lass P
    Nucl Med Rev Cent East Eur; 2004; 7(1):59-67. PubMed ID: 15318313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries.
    Alizadehsani R; Hosseini MJ; Khosravi A; Khozeimeh F; Roshanzamir M; Sarrafzadegan N; Nahavandi S
    Comput Methods Programs Biomed; 2018 Aug; 162():119-127. PubMed ID: 29903478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features.
    Joo S; Yang YS; Moon WK; Kim HC
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting coronary artery disease: a comparison between two data mining algorithms.
    Ayatollahi H; Gholamhosseini L; Salehi M
    BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated interpretation of myocardial SPECT perfusion images using artificial neural networks.
    Lindahl D; Palmer J; Ohlsson M; Peterson C; Lundin A; Edenbrandt L
    J Nucl Med; 1997 Dec; 38(12):1870-5. PubMed ID: 9430460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural network classifier for the diagnosis of Parkinson's disease using [99mTc]TRODAT-1 and SPECT.
    Acton PD; Newberg A
    Phys Med Biol; 2006 Jun; 51(12):3057-66. PubMed ID: 16757862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.
    Bizios D; Heijl A; Bengtsson B
    J Glaucoma; 2007 Jan; 16(1):20-8. PubMed ID: 17224745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved artificial neural networks in prediction of malignancy of lesions in contrast-enhanced MR-mammography.
    Vomweg TW; Buscema M; Kauczor HU; Teifke A; Intraligi M; Terzi S; Heussel CP; Achenbach T; Rieker O; Mayer D; Thelen M
    Med Phys; 2003 Sep; 30(9):2350-9. PubMed ID: 14528957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm.
    Plumb AP; Rowe RC; York P; Brown M
    Eur J Pharm Sci; 2005; 25(4-5):395-405. PubMed ID: 15893460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial neural network algorithm to detection of parathyroid adenoma.
    Stefaniak B; Cholewiński W; Tarkowska A
    Nucl Med Rev Cent East Eur; 2003; 6(2):111-7. PubMed ID: 14737724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of spinal deformity classification with total curvature analysis and artificial neural network.
    Lin H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):376-82. PubMed ID: 18232388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty in the output of artificial neural networks.
    Jiang Y
    IEEE Trans Med Imaging; 2003 Jul; 22(7):913-21. PubMed ID: 12906245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of knowledge discovery process on the prediction of stroke.
    Colak C; Karaman E; Turtay MG
    Comput Methods Programs Biomed; 2015 May; 119(3):181-5. PubMed ID: 25827533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.