These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18676643)

  • 1. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex.
    Vashisth H; Abrams CF
    Biophys J; 2008 Nov; 95(9):4193-204. PubMed ID: 18676643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin.
    Ciszak E; Beals JM; Frank BH; Baker JC; Carter ND; Smith GD
    Structure; 1995 Jun; 3(6):615-22. PubMed ID: 8590022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the symmetry ambiguity in a hexamer: calculation of the R6 human insulin structure.
    O'Donoghue SI; Chang X; Abseher R; Nilges M; Led JJ
    J Biomol NMR; 2000 Feb; 16(2):93-108. PubMed ID: 10723989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of phenol to R6 insulin hexamers.
    Berchtold H; Hilgenfeld R
    Biopolymers; 1999; 51(2):165-72. PubMed ID: 10397800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol.
    Šolínová V; Žáková L; Jiráček J; Kašička V
    Anal Chim Acta; 2019 Apr; 1052():170-178. PubMed ID: 30685036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers.
    Birnbaum DT; Dodd SW; Saxberg BE; Varshavsky AD; Beals JM
    Biochemistry; 1996 Apr; 35(17):5366-78. PubMed ID: 8611526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec.
    Steensgaard DB; Schluckebier G; Strauss HM; Norrman M; Thomsen JK; Friderichsen AV; Havelund S; Jonassen I
    Biochemistry; 2013 Jan; 52(2):295-309. PubMed ID: 23256685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol.
    Whittingham JL; Chaudhuri S; Dodson EJ; Moody PC; Dodson GG
    Biochemistry; 1995 Nov; 34(47):15553-63. PubMed ID: 7492558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MD simulation of protein-ligand interaction: formation and dissociation of an insulin-phenol complex.
    Swegat W; Schlitter J; Krüger P; Wollmer A
    Biophys J; 2003 Mar; 84(3):1493-506. PubMed ID: 12609856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Phenol Escape from the Insulin R
    Antoszewski A; Lorpaiboon C; Strahan J; Dinner AR
    J Phys Chem B; 2021 Oct; 125(42):11637-11649. PubMed ID: 34648712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex.
    Bakaysa DL; Radziuk J; Havel HA; Brader ML; Li S; Dodd SW; Beals JM; Pekar AH; Brems DN
    Protein Sci; 1996 Dec; 5(12):2521-31. PubMed ID: 8976561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural consequences of the B5 histidine --> tyrosine mutation in human insulin characterized by X-ray crystallography and conformational analysis.
    Tang L; Whittingham JL; Verma CS; Caves LS; Dodson GG
    Biochemistry; 1999 Sep; 38(37):12041-51. PubMed ID: 10508408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Binding Affinity by Jarzynski's Nonequilibrium Binding Free Energy and Rupture Time.
    Truong DT; Li MS
    J Phys Chem B; 2018 May; 122(17):4693-4699. PubMed ID: 29630379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro --> Asp insulin analogues.
    Whittingham JL; Edwards DJ; Antson AA; Clarkson JM; Dodson GG
    Biochemistry; 1998 Aug; 37(33):11516-23. PubMed ID: 9708987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
    Okimoto N; Suenaga A; Taiji M
    J Biomol Struct Dyn; 2017 Nov; 35(15):3221-3231. PubMed ID: 27771988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of metal ions in the T- to R-allosteric transition in the insulin hexamer.
    Kadima W
    Biochemistry; 1999 Oct; 38(41):13443-52. PubMed ID: 10521251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and dissociation of human insulin and LysB28ProB29-insulin hexamers: a comparison study.
    Birnbaum DT; Kilcomons MA; DeFelippis MR; Beals JM
    Pharm Res; 1997 Jan; 14(1):25-36. PubMed ID: 9034217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin dimer dissociation in aqueous solution: A computational study of free energy landscape and evolving microscopic structure along the reaction pathway.
    Banerjee P; Mondal S; Bagchi B
    J Chem Phys; 2018 Sep; 149(11):114902. PubMed ID: 30243274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.