These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 18677354)
1. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm. Banerjee S; Hoshino T; Cole JB J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1921-8. PubMed ID: 18677354 [TBL] [Abstract][Full Text] [Related]
2. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces. Deng S Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461 [TBL] [Abstract][Full Text] [Related]
3. Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings. Papadopoulos AD; Glytsis EN Appl Opt; 2008 Apr; 47(12):1981-94. PubMed ID: 18425170 [TBL] [Abstract][Full Text] [Related]
4. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method. Yamaguchi T; Hinata T Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505 [TBL] [Abstract][Full Text] [Related]
5. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications. Han K; Chang CH Nanomaterials (Basel); 2014 Jan; 4(1):87-128. PubMed ID: 28348287 [TBL] [Abstract][Full Text] [Related]
6. Light-opals interaction modeling by direct numerical solution of Maxwell's equations. Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918 [TBL] [Abstract][Full Text] [Related]
7. Extraordinary optical transmission through periodic Drude-like graphene sheets using FDTD algorithms and its unconditionally stable approximate Crank-Nicolson implementation. Wu S; Sun Y; Chi M; Chen X Sci Rep; 2020 Oct; 10(1):17462. PubMed ID: 33060774 [TBL] [Abstract][Full Text] [Related]
8. Photonic band gap analysis using finite-difference frequency-domain method. Guo S; Wu F; Albin S; Rogowski R Opt Express; 2004 Apr; 12(8):1741-6. PubMed ID: 19475000 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: application to the study of a radar dome. Belkhir A; Baida FI Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056701. PubMed ID: 18643189 [TBL] [Abstract][Full Text] [Related]
10. Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD. Willis KJ; Schneider JB; Hagness SC Opt Express; 2008 Feb; 16(3):1903-14. PubMed ID: 18542269 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional fast marching for geometrical optics. Capozzoli A; Curcio C; Liseno A; Savarese S Opt Express; 2014 Nov; 22(22):26680-95. PubMed ID: 25401818 [TBL] [Abstract][Full Text] [Related]
12. A frequency-dependent finite-difference time-domain formulation for induced current calculations in human beings. Gandhi OP; Gao BQ; Chen JY Bioelectromagnetics; 1992; 13(6):543-55. PubMed ID: 1482417 [TBL] [Abstract][Full Text] [Related]
13. Solution of the inhomogeneous Maxwell's equations using a Born series. Krüger B; Brenner T; Kienle A Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187 [TBL] [Abstract][Full Text] [Related]
14. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media. Zhao S Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222 [TBL] [Abstract][Full Text] [Related]
15. Multiple interfacing between classical ray-tracing and wave-optical simulation approaches: a study on applicability and accuracy. Leiner C; Nemitz W; Schweitzer S; Wenzl FP; Hartmann P; Hohenester U; Sommer C Opt Express; 2014 Jun; 22(13):16048-60. PubMed ID: 24977859 [TBL] [Abstract][Full Text] [Related]
16. Analysis of third harmonic generation and four wave mixing in gold nanostructures by nonlinear finite difference time domain. Sasanpour P; Shahmansouri A; Rashidian B J Nanosci Nanotechnol; 2010 Nov; 10(11):7179-82. PubMed ID: 21137892 [TBL] [Abstract][Full Text] [Related]
17. Tailoring permittivity using metasurface: a facile way of enhancing extreme-angle transmissions for both TE- and TM-polarizations. Chu Z; Li T; Wang J; Jiang J; Zhu R; Gui B; Qu S Opt Express; 2022 Aug; 30(16):29365-29379. PubMed ID: 36299112 [TBL] [Abstract][Full Text] [Related]
18. Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors. Wang R; Li T; Shao X; Li X; Huang X; Shao J; Chen Y; Gong H ACS Appl Mater Interfaces; 2015 Jul; 7(26):14471-6. PubMed ID: 26115531 [TBL] [Abstract][Full Text] [Related]
19. Localized input fields in rigorous coupled-wave analysis. Auer M; Brenner KH J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2385-93. PubMed ID: 25401349 [TBL] [Abstract][Full Text] [Related]
20. Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method. Ting CL; Lin TH; Liao CC; Fuh AY Opt Express; 2006 Jun; 14(12):5594-606. PubMed ID: 19516728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]