BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 18677555)

  • 1. Mitochondrial membrane cholesterol, the voltage dependent anion channel (VDAC), and the Warburg effect.
    Campbell AM; Chan SH
    J Bioenerg Biomembr; 2008 Jun; 40(3):193-7. PubMed ID: 18677555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the "Warburg effect" in cancer.
    Pedersen PL
    J Bioenerg Biomembr; 2008 Jun; 40(3):123-6. PubMed ID: 18780167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The voltage dependent anion channel affects mitochondrial cholesterol distribution and function.
    Campbell AM; Chan SH
    Arch Biochem Biophys; 2007 Oct; 466(2):203-10. PubMed ID: 17662230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation.
    Fang D; Maldonado EN
    Adv Cancer Res; 2018; 138():41-69. PubMed ID: 29551129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box.
    Lemasters JJ; Holmuhamedov E
    Biochim Biophys Acta; 2006 Feb; 1762(2):181-90. PubMed ID: 16307870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.
    Lemeshko VV
    Biochim Biophys Acta; 2014 May; 1838(5):1362-71. PubMed ID: 24412217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect.
    Lemasters JJ; Holmuhamedov EL; Czerny C; Zhong Z; Maldonado EN
    Biochim Biophys Acta; 2012 Jun; 1818(6):1536-44. PubMed ID: 22172804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the voltage dependent anion channel: state of the art.
    De Pinto V; Reina S; Guarino F; Messina A
    J Bioenerg Biomembr; 2008 Jun; 40(3):139-47. PubMed ID: 18668358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.
    Das S; Wong R; Rajapakse N; Murphy E; Steenbergen C
    Circ Res; 2008 Oct; 103(9):983-91. PubMed ID: 18802025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VDAC electronics: 2. A new, anaerobic mechanism of generation of the membrane potentials in mitochondria.
    Lemeshko VV
    Biochim Biophys Acta; 2014 Jul; 1838(7):1801-8. PubMed ID: 24565793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin.
    Maldonado EN; Sheldon KL; DeHart DN; Patnaik J; Manevich Y; Townsend DM; Bezrukov SM; Rostovtseva TK; Lemasters JJ
    J Biol Chem; 2013 Apr; 288(17):11920-9. PubMed ID: 23471966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria.
    Shuvo SR; Wiens LM; Subramaniam S; Treberg JR; Court DA
    J Bioenerg Biomembr; 2019 Oct; 51(5):341-354. PubMed ID: 31392584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect.
    Maldonado EN; Lemasters JJ
    Mitochondrion; 2014 Nov; 19 Pt A():78-84. PubMed ID: 25229666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New findings concerning vertebrate porin II--on the relevance of glycine motifs of type-1 VDAC.
    Thinnes FP
    Mol Genet Metab; 2013 Apr; 108(4):212-24. PubMed ID: 23419876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis.
    Veenman L; Shandalov Y; Gavish M
    J Bioenerg Biomembr; 2008 Jun; 40(3):199-205. PubMed ID: 18670869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator.
    Mannella CA; Kinnally KW
    J Bioenerg Biomembr; 2008 Jun; 40(3):149-55. PubMed ID: 18648913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VDAC in cancer.
    Mazure NM
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):665-673. PubMed ID: 28283400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warburg revisited: regulation of mitochondrial metabolism by voltage-dependent anion channels in cancer cells.
    Maldonado EN; Lemasters JJ
    J Pharmacol Exp Ther; 2012 Sep; 342(3):637-41. PubMed ID: 22700429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VDAC inhibition by tubulin and its physiological implications.
    Rostovtseva TK; Bezrukov SM
    Biochim Biophys Acta; 2012 Jun; 1818(6):1526-35. PubMed ID: 22100746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific VDAC inhibitors: phosphorothioate oligonucleotides.
    Stein CA; Colombini M
    J Bioenerg Biomembr; 2008 Jun; 40(3):157-62. PubMed ID: 18654842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.