These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 18677566)
1. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Gradinaru V; Thompson KR; Deisseroth K Brain Cell Biol; 2008 Aug; 36(1-4):129-39. PubMed ID: 18677566 [TBL] [Abstract][Full Text] [Related]
2. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Zhao S; Cunha C; Zhang F; Liu Q; Gloss B; Deisseroth K; Augustine GJ; Feng G Brain Cell Biol; 2008 Aug; 36(1-4):141-54. PubMed ID: 18931914 [TBL] [Abstract][Full Text] [Related]
3. Light-induced silencing of neural activity in Rosa26 knock-in mice conditionally expressing the microbial halorhodopsin eNpHR2.0. Imayoshi I; Tabuchi S; Hirano K; Sakamoto M; Kitano S; Miyachi H; Yamanaka A; Kageyama R Neurosci Res; 2013 Jan; 75(1):53-8. PubMed ID: 22465523 [TBL] [Abstract][Full Text] [Related]
4. Multimodal fast optical interrogation of neural circuitry. Zhang F; Wang LP; Brauner M; Liewald JF; Kay K; Watzke N; Wood PG; Bamberg E; Nagel G; Gottschalk A; Deisseroth K Nature; 2007 Apr; 446(7136):633-9. PubMed ID: 17410168 [TBL] [Abstract][Full Text] [Related]
5. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Zhang F; Prigge M; Beyrière F; Tsunoda SP; Mattis J; Yizhar O; Hegemann P; Deisseroth K Nat Neurosci; 2008 Jun; 11(6):631-3. PubMed ID: 18432196 [TBL] [Abstract][Full Text] [Related]
6. Optical control of zebrafish behavior with halorhodopsin. Arrenberg AB; Del Bene F; Baier H Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17968-73. PubMed ID: 19805086 [TBL] [Abstract][Full Text] [Related]
7. Probing the Cl--pumping photocycle of pharaonis halorhodopsin: Examinations with bacterioruberin, an intrinsic dye, and membrane potential-induced modulation of the photocycle. Kikukawa T; Kusakabe C; Kokubo A; Tsukamoto T; Kamiya M; Aizawa T; Ihara K; Kamo N; Demura M Biochim Biophys Acta; 2015 Aug; 1847(8):748-58. PubMed ID: 25960108 [TBL] [Abstract][Full Text] [Related]
8. Natronomonas pharaonis halorhodopsin Ser81 plays a role in maintaining chloride ions near the Schiff base. Sakajiri Y; Sugano E; Watanabe Y; Sakajiri T; Tabata K; Kikuchi T; Tomita H Biochem Biophys Res Commun; 2018 Sep; 503(4):2326-2332. PubMed ID: 29964009 [TBL] [Abstract][Full Text] [Related]
9. Light-induced silencing of neural activity in Rosa26 knock-in and BAC transgenic mice conditionally expressing the microbial halorhodopsin eNpHR3. Imayoshi I; Tabuchi S; Matsumoto M; Kitano S; Miyachi H; Kageyama R; Yamanaka A Sci Rep; 2020 Feb; 10(1):3191. PubMed ID: 32081938 [TBL] [Abstract][Full Text] [Related]
10. Optical mapping of optogenetically shaped cardiac action potentials. Park SA; Lee SR; Tung L; Yue DT Sci Rep; 2014 Aug; 4():6125. PubMed ID: 25135113 [TBL] [Abstract][Full Text] [Related]
11. Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Berglind F; Ledri M; Sørensen AT; Nikitidou L; Melis M; Bielefeld P; Kirik D; Deisseroth K; Andersson M; Kokaia M Neurobiol Dis; 2014 May; 65():133-41. PubMed ID: 24491965 [TBL] [Abstract][Full Text] [Related]
12. Structural changes of Natronomonas pharaonis halorhodopsin in its late photocycle revealed by solid-state NMR spectroscopy. Zhang X; Tamaki H; Kikukawa T; Fujiwara T; Matsuki Y Biophys Chem; 2024 Dec; 315():107329. PubMed ID: 39369577 [TBL] [Abstract][Full Text] [Related]
13. Dcf1 Improves Behavior Deficit in Drosophila and Mice Caused by Optogenetic Suppression. Liu Q; Gan L; Ni J; Chen Y; Chen Y; Huang Z; Huang X; Wen T J Cell Biochem; 2017 Dec; 118(12):4210-4215. PubMed ID: 28401598 [TBL] [Abstract][Full Text] [Related]
14. Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. Inada K; Kohsaka H; Takasu E; Matsunaga T; Nose A PLoS One; 2011; 6(12):e29019. PubMed ID: 22216159 [TBL] [Abstract][Full Text] [Related]
15. Retinal-protein interactions in halorhodopsin from Natronomonas pharaonis: binding and retinal thermal isomerization catalysis. Maiti TK; Engelhard M; Sheves M J Mol Biol; 2009 Dec; 394(3):472-84. PubMed ID: 19766652 [TBL] [Abstract][Full Text] [Related]
16. A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis. Chen XR; Huang YC; Yi HP; Yang CS Biophys J; 2016 Dec; 111(12):2600-2607. PubMed ID: 28002736 [TBL] [Abstract][Full Text] [Related]
17. Effect of chloride binding on the thermal trimer-monomer conversion of halorhodopsin in the solubilized system. Sasaki T; Aizawa T; Kamiya M; Kikukawa T; Kawano K; Kamo N; Demura M Biochemistry; 2009 Dec; 48(51):12089-95. PubMed ID: 19938870 [TBL] [Abstract][Full Text] [Related]
18. Comparison of low-power, high-frequency and temporally precise optogenetic inhibition of spiking in NpHR, eNpHR3.0 and Jaws-expressing neurons. Bansal H; Gupta N; Roy S Biomed Phys Eng Express; 2020 May; 6(4):045011. PubMed ID: 33444272 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of halorhodopsin-bacterioruberin complex from Natronomonas pharaonis membrane in the solubilized system. Sasaki T; Razak NW; Kato N; Mukai Y Biochemistry; 2012 Apr; 51(13):2785-94. PubMed ID: 22369627 [TBL] [Abstract][Full Text] [Related]
20. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Kralj JM; Douglass AD; Hochbaum DR; Maclaurin D; Cohen AE Nat Methods; 2011 Nov; 9(1):90-5. PubMed ID: 22120467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]