These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
667 related articles for article (PubMed ID: 18678533)
1. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
2. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the particle release of porous PMMA cements during curing. Beck S; Boger A Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868 [TBL] [Abstract][Full Text] [Related]
4. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. Arens D; Rothstock S; Windolf M; Boger A J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908 [TBL] [Abstract][Full Text] [Related]
5. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. Boger A; Wheeler K; Montali A; Gruskin E J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644 [TBL] [Abstract][Full Text] [Related]
6. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
7. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
8. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: a numerical study of interface properties, PMMA shrinkage and trabecular bone damage. Kinzl M; Boger A; Zysset PK; Pahr DH J Biomech; 2012 May; 45(8):1478-84. PubMed ID: 22386105 [TBL] [Abstract][Full Text] [Related]
9. The effects of bone and pore volume fraction on the mechanical properties of PMMA/bone biopsies extracted from augmented vertebrae. Kinzl M; Boger A; Zysset PK; Pahr DH J Biomech; 2011 Oct; 44(15):2732-6. PubMed ID: 21872863 [TBL] [Abstract][Full Text] [Related]
10. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. Boger A; Bohner M; Heini P; Verrier S; Schneider E J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):474-82. PubMed ID: 18288697 [TBL] [Abstract][Full Text] [Related]
11. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS Spine J; 2008; 8(3):482-7. PubMed ID: 18455113 [TBL] [Abstract][Full Text] [Related]
12. Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading. Oakland RJ; Furtado NR; Wilcox RK; Timothy J; Hall RM Spine J; 2009 Feb; 9(2):174-81. PubMed ID: 18640876 [TBL] [Abstract][Full Text] [Related]
13. Low-modulus PMMA bone cement modified with castor oil. López A; Hoess A; Thersleff T; Ott M; Engqvist H; Persson C Biomed Mater Eng; 2011; 21(5-6):323-32. PubMed ID: 22561251 [TBL] [Abstract][Full Text] [Related]
14. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596 [TBL] [Abstract][Full Text] [Related]
15. Short- and long-term effects of vertebroplastic bone cement on cancellous bone. Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857 [TBL] [Abstract][Full Text] [Related]
16. Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Boger A; Heini P; Windolf M; Schneider E Eur Spine J; 2007 Dec; 16(12):2118-25. PubMed ID: 17713795 [TBL] [Abstract][Full Text] [Related]
17. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan]. Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134 [TBL] [Abstract][Full Text] [Related]
18. Mechanics of bone/PMMA composite structures: an in vitro study of human vertebrae. Race A; Mann KA; Edidin AA J Biomech; 2007; 40(5):1002-10. PubMed ID: 16797554 [TBL] [Abstract][Full Text] [Related]
19. Radius fracture repair using volumetrically expanding polyurethane bone cement. Boxberger JI; Adams DJ; Diaz-Doran V; Akkarapaka NB; Kolb ED J Hand Surg Am; 2011 Aug; 36(8):1294-302. PubMed ID: 21715102 [TBL] [Abstract][Full Text] [Related]
20. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement. Belkoff SM; Sanders JC; Jasper LE J Biomed Mater Res; 2002; 63(4):396-9. PubMed ID: 12115746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]