These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 18679740)
1. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds. Yoshikawa M; Tsuji N; Shimomura Y; Hayashi H; Ohgushi H Calcif Tissue Int; 2008 Aug; 83(2):139-45. PubMed ID: 18679740 [TBL] [Abstract][Full Text] [Related]
2. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
3. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. Yu H; Vandevord PJ; Gong W; Wu B; Song Z; Matthew HW; Wooley PH; Yang SY J Orthop Res; 2008 Aug; 26(8):1147-52. PubMed ID: 18327810 [TBL] [Abstract][Full Text] [Related]
4. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
5. The effect of aging on bone formation in porous hydroxyapatite: biochemical and histological analysis. Inoue K; Ohgushi H; Yoshikawa T; Okumura M; Sempuku T; Tamai S; Dohi Y J Bone Miner Res; 1997 Jun; 12(6):989-94. PubMed ID: 9169360 [TBL] [Abstract][Full Text] [Related]
6. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
8. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Shimizu K; Ito A; Honda H J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479 [TBL] [Abstract][Full Text] [Related]
9. Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site. Akahane M; Nakamura A; Ohgushi H; Shigematsu H; Dohi Y; Takakura Y J Tissue Eng Regen Med; 2008 Jun; 2(4):196-201. PubMed ID: 18493911 [TBL] [Abstract][Full Text] [Related]
10. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
11. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371 [TBL] [Abstract][Full Text] [Related]
12. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Oliveira JM; Kotobuki N; Tadokoro M; Hirose M; Mano JF; Reis RL; Ohgushi H Bone; 2010 May; 46(5):1424-35. PubMed ID: 20152952 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering. Tian L; Prabhakaran MP; Ding X; Ramakrishna S J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766 [TBL] [Abstract][Full Text] [Related]
14. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Wülfing T J Biomed Mater Res A; 2009 Aug; 90(2):429-37. PubMed ID: 18523951 [TBL] [Abstract][Full Text] [Related]
15. Long-term durability of porous hydroxyapatite with low-pressure system to support osteogenesis of mesenchymal stem cells. Dong J; Uemura T; Kikuchi M; Tanaka J; Tateishi T Biomed Mater Eng; 2002; 12(2):203-9. PubMed ID: 12122243 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
17. In vivo osteogenic capability of cultured allogeneic bone in porous hydroxyapatite: immunosuppressive and osteogenic potential of FK506 in vivo. Yoshikawa T; Nakajima H; Yamada E; Akahane M; Dohi Y; Ohgushi H; Tamai S; Ichijima K J Bone Miner Res; 2000 Jun; 15(6):1147-57. PubMed ID: 10841184 [TBL] [Abstract][Full Text] [Related]
18. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
19. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
20. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]