These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 18679814)
1. Molecular and cytogenetic characterization of repetitive DNA in the Antarctic polyplacophoran Nuttallochiton mirandus. Biscotti MA; Barucca M; Capriglione T; Odierna G; Olmo E; Canapa A Chromosome Res; 2008; 16(6):907-16. PubMed ID: 18679814 [TBL] [Abstract][Full Text] [Related]
2. Novel repeated DNAs in the antarctic polyplacophoran Nuttallochiton mirandus (Thiele, 1906). Biscotti MA; Canapa A; Capriglione T; Forconi M; Odierna G; Olmo E; Petraccioli A; Barucca M Cytogenet Genome Res; 2014; 144(3):212-9. PubMed ID: 25592394 [TBL] [Abstract][Full Text] [Related]
3. Karyology of the Antarctic chiton Nuttallochiton mirandus (Thiele, 1906) (Mollusca: Polyplacophora) with some considerations on chromosome evolution in chitons. Odierna G; Aprea G; Barucca M; Biscotti MA; Canapa A; Capriglione T; Olmo E Chromosome Res; 2008; 16(6):899-906. PubMed ID: 18668332 [TBL] [Abstract][Full Text] [Related]
4. All the three ParaHox genes are present in Nuttallochiton mirandus (Mollusca: polyplacophora): evolutionary considerations. Barucca M; Biscotti MA; Olmo E; Canapa A J Exp Zool B Mol Dev Evol; 2006 Mar; 306(2):164-7. PubMed ID: 16331637 [TBL] [Abstract][Full Text] [Related]
5. Hox genes in the antarctic polyplacophoran Nuttallochiton mirandus. Biscotti MA; Canapa A; Olmo E; Barucca M J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):507-13. PubMed ID: 17541967 [TBL] [Abstract][Full Text] [Related]
6. Molecular cytogenetic analysis of genome-specific repetitive elements in Citrus clementina Hort. Ex Tan. and its taxonomic implications. Deng H; Xiang S; Guo Q; Jin W; Cai Z; Liang G BMC Plant Biol; 2019 Feb; 19(1):77. PubMed ID: 30770721 [TBL] [Abstract][Full Text] [Related]
7. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Yamada K; Nishida-Umehara C; Matsuda Y Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323 [TBL] [Abstract][Full Text] [Related]
8. New types of mouse centromeric satellite DNAs. Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408 [TBL] [Abstract][Full Text] [Related]
9. Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Mazzuchelli J; Martins C Genetica; 2009 Jul; 136(3):461-9. PubMed ID: 19112556 [TBL] [Abstract][Full Text] [Related]
10. Molecular and cytogenetic characterization of site-specific repetitive DNA sequences in the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae). Yamada K; Nishida-Umehara C; Matsuda Y Chromosome Res; 2005; 13(1):33-46. PubMed ID: 15791410 [TBL] [Abstract][Full Text] [Related]
11. Genomic distribution of three repetitive DNAs in cultivated hexaploid Diospyros spp. (D. kaki and D. virginiana) and their wild relatives. Choi YA; Tao R; Yonemori K; Sugiura A Genes Genet Syst; 2003 Aug; 78(4):301-8. PubMed ID: 14532709 [TBL] [Abstract][Full Text] [Related]
12. A novel repeated sequence DNA originated from a Tc1-like transposon in water green frog Rana esculenta. Pontecorvo G; De Felice B; Carfagna M Gene; 2000 Dec; 261(2):205-10. PubMed ID: 11167006 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences. Saito Y; Edpalina RR; Abe S Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439 [TBL] [Abstract][Full Text] [Related]
14. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families. Li YC; Lee C; Hseu TH; Li SY; Lin CC Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121 [TBL] [Abstract][Full Text] [Related]
15. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species. Lee C; Ritchie DB; Lin CC Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645 [TBL] [Abstract][Full Text] [Related]
16. Parallelism in evolution of highly repetitive DNAs in sibling species. Mravinac B; Plohl M Mol Biol Evol; 2010 Aug; 27(8):1857-67. PubMed ID: 20203289 [TBL] [Abstract][Full Text] [Related]
17. Cytogenetic characterization of the Antarctic silverfish Pleuragramma antarctica (Boulenger 1902) through analysis of mitotic chromosomes from early larvae. Ghigliotti L; Cheng CC; Ozouf-Costaz C; Guidi-Rontani C; Vacchi M; Federici S; Pisano E Mar Genomics; 2020 Aug; 52():100737. PubMed ID: 31892467 [TBL] [Abstract][Full Text] [Related]
18. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Schmidt T; Heslop-Harrison JS Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122 [TBL] [Abstract][Full Text] [Related]
19. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing. da Silva MJ; Fogarin Destro R; Gazoni T; Narimatsu H; Pereira Dos Santos PS; Haddad CFB; Parise-Maltempi PP Cytogenet Genome Res; 2020; 160(3):141-147. PubMed ID: 32146462 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur. Ventura M; Boniotto M; Cardone MF; Fulizio L; Archidiacono N; Rocchi M; Crovella S Gene; 2001 Sep; 275(2):305-10. PubMed ID: 11587858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]