BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18679816)

  • 1. Phylogenomics of African guenons.
    Moulin S; Gerbault-Seureau M; Dutrillaux B; Richard FA
    Chromosome Res; 2008; 16(5):783-99. PubMed ID: 18679816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal painting between humans, De Brazza's and patas monkeys reveals a major bifurcation in the Cercopithecini phylogenetic tree.
    Stanyon R; Bruening R; Stone G; Shearin A; Bigoni F
    Cytogenet Genome Res; 2005; 108(1-3):175-82. PubMed ID: 15545727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome Painting in
    Milioto V; Sineo L; Dumas F
    Life (Basel); 2023 May; 13(5):. PubMed ID: 37240848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini).
    Tosi AJ; Detwiler KM; Disotell TR
    Mol Phylogenet Evol; 2005 Jul; 36(1):58-66. PubMed ID: 15904856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man.
    Dutrillaux B
    Hum Genet; 1979 May; 48(3):251-314. PubMed ID: 112030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primate genus Miopithecus: evidence for the existence of species and subspecies of dwarf guenons based on cellular and endogenous viral sequences.
    van der Kuyl AC; Dekker JT; Goudsmit J
    Mol Phylogenet Evol; 2000 Mar; 14(3):403-13. PubMed ID: 10712845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mobile element-based evolutionary history of guenons (tribe Cercopithecini).
    Xing J; Wang H; Zhang Y; Ray DA; Tosi AJ; Disotell TR; Batzer MA
    BMC Biol; 2007 Jan; 5():5. PubMed ID: 17266768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex chromosome phylogenetics indicate a single transition to terrestriality in the guenons (tribe Cercopithecini).
    Tosi AJ; Melnick DJ; Disotell TR
    J Hum Evol; 2004 Feb; 46(2):223-37. PubMed ID: 14871564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Karyotype evolution of eulipotyphla (insectivora): the genome homology of seven sorex species revealed by comparative chromosome painting and banding data.
    Biltueva L; Vorobieva N; Perelman P; Trifonov V; Volobouev V; Panov V; Ilyashenko V; Onischenko S; O'Brien P; Yang F; Ferguson-Smith M; Graphodatsky A
    Cytogenet Genome Res; 2011; 135(1):51-64. PubMed ID: 21912114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of the Cercopithecini: a (post)modern synthesis.
    Lo Bianco S; Masters JC; Sineo L
    Evol Anthropol; 2017 Nov; 26(6):336-349. PubMed ID: 29265656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal homologies between Cebus and Ateles (primates) based on ZOO-FISH and G-banding comparisons.
    García F; Ruiz-Herrera A; Egozcue J; Ponsà M; Garcia M
    Am J Primatol; 2002 Aug; 57(4):177-88. PubMed ID: 12210670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal evolution of 19 species of sub-species of Cercopithecinae.
    Dutrillaux B; Couturier J; Chauvier G
    Ann Genet; 1980; 23(3):133-43. PubMed ID: 6968529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting.
    Li T; O'Brien PC; Biltueva L; Fu B; Wang J; Nie W; Ferguson-Smith MA; Graphodatsky AS; Yang F
    Chromosome Res; 2004; 12(4):317-35. PubMed ID: 15241012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey.
    Stanyon R; Consigliere S; Müller S; Morescalchi A; Neusser M; Wienberg J
    Am J Primatol; 2000 Feb; 50(2):95-107. PubMed ID: 10676707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences.
    van der Kuyl AC; Kuiken CL; Dekker JT; Goudsmit J
    J Mol Evol; 1995 Feb; 40(2):173-80. PubMed ID: 7535363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosomal phylogeny and comparative chromosome painting among Neacomys species (Rodentia, Sigmodontinae) from eastern Amazonia.
    Oliveira da Silva W; Pieczarka JC; Rodrigues da Costa MJ; Ferguson-Smith MA; O'Brien PCM; Mendes-Oliveira AC; Rossi RV; Nagamachi CY
    BMC Evol Biol; 2019 Oct; 19(1):184. PubMed ID: 31601183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison.
    Romanenko SA; Volobouev VT; Perelman PL; Lebedev VS; Serdukova NA; Trifonov VA; Biltueva LS; Nie W; O'Brien PC; Bulatova NSh; Ferguson-Smith MA; Yang F; Graphodatsky AS
    Chromosome Res; 2007; 15(3):283-97. PubMed ID: 17333534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison.
    Mao X; Nie W; Wang J; Su W; Ao L; Feng Q; Wang Y; Volleth M; Yang F
    Chromosome Res; 2007; 15(7):835-48. PubMed ID: 17899409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level.
    Acosta MC; Moscone EA; Cocucci AA
    Plant Biol (Stuttg); 2016 May; 18(3):514-26. PubMed ID: 26718314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree.
    Graphodatsky AS; Yang F; Perelman PL; O'Brien PC; Serdukova NA; Milne BS; Biltueva LS; Fu B; Vorobieva NV; Kawada SI; Robinson TJ; Ferguson-Smith MA
    Cytogenet Genome Res; 2002; 96(1-4):137-45. PubMed ID: 12438790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.