These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 18680097)
1. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Kolodiazhnyi T; Pumera M Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Ge C; Lao F; Li W; Li Y; Chen C; Qiu Y; Mao X; Li B; Chai Z; Zhao Y Anal Chem; 2008 Dec; 80(24):9426-34. PubMed ID: 18998708 [TBL] [Abstract][Full Text] [Related]
3. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes. Pumera M; Iwai H Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183 [TBL] [Abstract][Full Text] [Related]
4. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes. Gao C; Tao F; Lin W; Xu Z; Xue Z J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046 [TBL] [Abstract][Full Text] [Related]
5. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. Jones CP; Jurkschat K; Crossley A; Compton RG; Riehl BL; Banks CE Langmuir; 2007 Aug; 23(18):9501-4. PubMed ID: 17655265 [TBL] [Abstract][Full Text] [Related]
6. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes. Ambrosi A; Pumera M Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697 [TBL] [Abstract][Full Text] [Related]
7. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Pumera M Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966 [TBL] [Abstract][Full Text] [Related]
8. Metal sulfide coated multiwalled carbon nanotubes synthesized by an in situ method and their optical limiting properties. Wu HX; Cao WM; Chen Q; Liu MM; Qian SX; Jia NQ; Yang H; Yang SP Nanotechnology; 2009 May; 20(19):195604. PubMed ID: 19420643 [TBL] [Abstract][Full Text] [Related]
9. Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. Kang JH; Park JK Small; 2007 Oct; 3(10):1784-91. PubMed ID: 17890645 [TBL] [Abstract][Full Text] [Related]
10. Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes. Zaka M; Ito Y; Wang H; Yan W; Robertson A; Wu YA; Rümmeli MH; Staunton D; Hashimoto T; Morton JJ; Ardavan A; Briggs GA; Warner JH ACS Nano; 2010 Dec; 4(12):7708-16. PubMed ID: 21082779 [TBL] [Abstract][Full Text] [Related]
11. What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Pumera M; Miyahara Y Nanoscale; 2009 Nov; 1(2):260-5. PubMed ID: 20644847 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy. Cambré S; Wenseleers W; Culin J; Van Doorslaer S; Fonseca A; Nagy JB; Goovaerts E Chemphyschem; 2008 Sep; 9(13):1930-41. PubMed ID: 18712730 [TBL] [Abstract][Full Text] [Related]
13. Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation. Zhou J; Song H; Chen X; Huo J J Am Chem Soc; 2010 Aug; 132(33):11402-5. PubMed ID: 20684548 [TBL] [Abstract][Full Text] [Related]
14. Ultrathin organically modified silica layer coated carbon nanotubes: fabrication, characterization and electrical insulating properties. Pumera M; Sasaki T; Smíd B Chem Asian J; 2009 May; 4(5):662-7. PubMed ID: 19263459 [TBL] [Abstract][Full Text] [Related]
15. Removal of metal catalyst in multi-walled carbon nanotubes with combination of air and hydrogen annealing followed by acid treatment. Li Q; Yuan D; Guan B; Lin Q; Wang X J Nanosci Nanotechnol; 2008 Nov; 8(11):5807-12. PubMed ID: 19198309 [TBL] [Abstract][Full Text] [Related]
16. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene. Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231 [TBL] [Abstract][Full Text] [Related]
17. Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites. Doong RA; Chiang LF Water Sci Technol; 2008; 58(10):1985-92. PubMed ID: 19039179 [TBL] [Abstract][Full Text] [Related]
18. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes. Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106 [TBL] [Abstract][Full Text] [Related]
19. A new surface-enhanced Raman scattering system for carbon nanotubes. Ouyang Y; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2211-3. PubMed ID: 15911413 [TBL] [Abstract][Full Text] [Related]
20. Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO2 as a spacer. Guo S; Dong S; Wang E Small; 2008 Aug; 4(8):1133-8. PubMed ID: 18623296 [No Abstract] [Full Text] [Related] [Next] [New Search]