These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 18680360)
1. Effect of base sequence and deprotonation of Guanine cation radical in DNA. Kobayashi K; Yamagami R; Tagawa S J Phys Chem B; 2008 Aug; 112(34):10752-7. PubMed ID: 18680360 [TBL] [Abstract][Full Text] [Related]
2. Direct observation of guanine radical cation deprotonation in duplex DNA using pulse radiolysis. Kobayashi K; Tagawa S J Am Chem Soc; 2003 Aug; 125(34):10213-8. PubMed ID: 12926943 [TBL] [Abstract][Full Text] [Related]
3. Evidence of formation of adenine dimer cation radical in DNA: the importance of adenine base stacking. Kobayashi K J Phys Chem B; 2010 Apr; 114(16):5600-4. PubMed ID: 20369809 [TBL] [Abstract][Full Text] [Related]
4. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions. Joffe A; Geacintov NE; Shafirovich V Chem Res Toxicol; 2003 Dec; 16(12):1528-38. PubMed ID: 14680366 [TBL] [Abstract][Full Text] [Related]
5. Formation of spectral intermediate G-C and A-T anion complex in duplex DNA studied by pulse radiolysis. Yamagami R; Kobayashi K; Tagawa S J Am Chem Soc; 2008 Nov; 130(44):14772-7. PubMed ID: 18841971 [TBL] [Abstract][Full Text] [Related]
6. DFT calculations on the deprotonation site of the one-electron oxidised guanine-cytosine base pair. Steenken S; Reynisson J Phys Chem Chem Phys; 2010 Aug; 12(31):9088-93. PubMed ID: 20532316 [TBL] [Abstract][Full Text] [Related]
7. Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine-cytosine base pair radical anion. Chen HY; Yeh SW; Hsu SC; Kao CL; Dong TY Phys Chem Chem Phys; 2011 Feb; 13(7):2674-81. PubMed ID: 21152551 [TBL] [Abstract][Full Text] [Related]
8. Role of the guanine N1 imino proton in the migration and reaction of radical cations in DNA oligomers. Ghosh AK; Schuster GB J Am Chem Soc; 2006 Apr; 128(13):4172-3. PubMed ID: 16568960 [TBL] [Abstract][Full Text] [Related]
9. Effect of base pairing on the electrochemical oxidation of guanine. Costentin C; Hajj V; Robert M; Savéant JM; Tard C J Am Chem Soc; 2010 Jul; 132(29):10142-7. PubMed ID: 20597511 [TBL] [Abstract][Full Text] [Related]
10. Proton transfer in guanine-cytosine radical anion embedded in B-form DNA. Chen HY; Kao CL; Hsu SC J Am Chem Soc; 2009 Nov; 131(43):15930-8. PubMed ID: 19860482 [TBL] [Abstract][Full Text] [Related]
11. Direct observation of guanine radical cation deprotonation in G-quadruplex DNA. Wu L; Liu K; Jie J; Song D; Su H J Am Chem Soc; 2015 Jan; 137(1):259-66. PubMed ID: 25506785 [TBL] [Abstract][Full Text] [Related]
12. Guanine-derived radicals: dielectric constant-dependent stability and UV/Vis spectral properties: a DFT study. Naumov S; von Sonntag C Radiat Res; 2008 Mar; 169(3):364-72. PubMed ID: 18302485 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate. Lee YA; Yun BH; Kim SK; Margolin Y; Dedon PC; Geacintov NE; Shafirovich V Chemistry; 2007; 13(16):4571-81. PubMed ID: 17335089 [TBL] [Abstract][Full Text] [Related]
14. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory. von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608 [TBL] [Abstract][Full Text] [Related]
15. Rapid radical formation by DNA charge transport through sequences lacking intervening guanines. Yoo J; Delaney S; Stemp ED; Barton JK J Am Chem Soc; 2003 Jun; 125(22):6640-1. PubMed ID: 12769567 [TBL] [Abstract][Full Text] [Related]
16. One-electron oxidation of DNA: the effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction. Kanvah S; Schuster GB J Am Chem Soc; 2004 Jun; 126(23):7341-4. PubMed ID: 15186172 [TBL] [Abstract][Full Text] [Related]
17. Lifetime regulation of the charge-separated state in DNA by modulating the oxidation potential of guanine in DNA through hydrogen bonding. Kawai K; Osakada Y; Takada T; Fujitsuka M; Majima T J Am Chem Soc; 2004 Oct; 126(40):12843-6. PubMed ID: 15469280 [TBL] [Abstract][Full Text] [Related]
18. Selective one-electron oxidation of duplex DNA oligomers: reaction at thymines. Ghosh A; Joy A; Schuster GB; Douki T; Cadet J Org Biomol Chem; 2008 Mar; 6(5):916-28. PubMed ID: 18292885 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study of the tautomerism in the one-electron oxidized guanine-cytosine base pair. Cerón-Carrasco JP; Requena A; Perpète EA; Michaux C; Jacquemin D J Phys Chem B; 2010 Oct; 114(42):13439-45. PubMed ID: 20883043 [TBL] [Abstract][Full Text] [Related]
20. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling. Sun L; Bu Y J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]