BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 18680360)

  • 1. Effect of base sequence and deprotonation of Guanine cation radical in DNA.
    Kobayashi K; Yamagami R; Tagawa S
    J Phys Chem B; 2008 Aug; 112(34):10752-7. PubMed ID: 18680360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of guanine radical cation deprotonation in duplex DNA using pulse radiolysis.
    Kobayashi K; Tagawa S
    J Am Chem Soc; 2003 Aug; 125(34):10213-8. PubMed ID: 12926943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of formation of adenine dimer cation radical in DNA: the importance of adenine base stacking.
    Kobayashi K
    J Phys Chem B; 2010 Apr; 114(16):5600-4. PubMed ID: 20369809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.
    Joffe A; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2003 Dec; 16(12):1528-38. PubMed ID: 14680366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of spectral intermediate G-C and A-T anion complex in duplex DNA studied by pulse radiolysis.
    Yamagami R; Kobayashi K; Tagawa S
    J Am Chem Soc; 2008 Nov; 130(44):14772-7. PubMed ID: 18841971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT calculations on the deprotonation site of the one-electron oxidised guanine-cytosine base pair.
    Steenken S; Reynisson J
    Phys Chem Chem Phys; 2010 Aug; 12(31):9088-93. PubMed ID: 20532316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine-cytosine base pair radical anion.
    Chen HY; Yeh SW; Hsu SC; Kao CL; Dong TY
    Phys Chem Chem Phys; 2011 Feb; 13(7):2674-81. PubMed ID: 21152551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the guanine N1 imino proton in the migration and reaction of radical cations in DNA oligomers.
    Ghosh AK; Schuster GB
    J Am Chem Soc; 2006 Apr; 128(13):4172-3. PubMed ID: 16568960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of base pairing on the electrochemical oxidation of guanine.
    Costentin C; Hajj V; Robert M; Savéant JM; Tard C
    J Am Chem Soc; 2010 Jul; 132(29):10142-7. PubMed ID: 20597511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton transfer in guanine-cytosine radical anion embedded in B-form DNA.
    Chen HY; Kao CL; Hsu SC
    J Am Chem Soc; 2009 Nov; 131(43):15930-8. PubMed ID: 19860482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of guanine radical cation deprotonation in G-quadruplex DNA.
    Wu L; Liu K; Jie J; Song D; Su H
    J Am Chem Soc; 2015 Jan; 137(1):259-66. PubMed ID: 25506785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanine-derived radicals: dielectric constant-dependent stability and UV/Vis spectral properties: a DFT study.
    Naumov S; von Sonntag C
    Radiat Res; 2008 Mar; 169(3):364-72. PubMed ID: 18302485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.
    Lee YA; Yun BH; Kim SK; Margolin Y; Dedon PC; Geacintov NE; Shafirovich V
    Chemistry; 2007; 13(16):4571-81. PubMed ID: 17335089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory.
    von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME
    J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid radical formation by DNA charge transport through sequences lacking intervening guanines.
    Yoo J; Delaney S; Stemp ED; Barton JK
    J Am Chem Soc; 2003 Jun; 125(22):6640-1. PubMed ID: 12769567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-electron oxidation of DNA: the effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction.
    Kanvah S; Schuster GB
    J Am Chem Soc; 2004 Jun; 126(23):7341-4. PubMed ID: 15186172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lifetime regulation of the charge-separated state in DNA by modulating the oxidation potential of guanine in DNA through hydrogen bonding.
    Kawai K; Osakada Y; Takada T; Fujitsuka M; Majima T
    J Am Chem Soc; 2004 Oct; 126(40):12843-6. PubMed ID: 15469280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective one-electron oxidation of duplex DNA oligomers: reaction at thymines.
    Ghosh A; Joy A; Schuster GB; Douki T; Cadet J
    Org Biomol Chem; 2008 Mar; 6(5):916-28. PubMed ID: 18292885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the tautomerism in the one-electron oxidized guanine-cytosine base pair.
    Cerón-Carrasco JP; Requena A; Perpète EA; Michaux C; Jacquemin D
    J Phys Chem B; 2010 Oct; 114(42):13439-45. PubMed ID: 20883043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling.
    Sun L; Bu Y
    J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.