BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 18680382)

  • 1. 3-D tumor model for in vitro evaluation of anticancer drugs.
    Horning JL; Sahoo SK; Vijayaraghavalu S; Dimitrijevic S; Vasir JK; Jain TK; Panda AK; Labhasetwar V
    Mol Pharm; 2008; 5(5):849-62. PubMed ID: 18680382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen.
    Dhiman HK; Ray AR; Panda AK
    Biomaterials; 2005 Mar; 26(9):979-86. PubMed ID: 15369686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs.
    Mitra M; Mohanty C; Harilal A; Maheswari UK; Sahoo SK; Krishnakumar S
    Mol Vis; 2012; 18():1361-78. PubMed ID: 22690114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing.
    Zhang X; Wang W; Yu W; Xie Y; Zhang X; Zhang Y; Ma X
    Biotechnol Prog; 2005; 21(4):1289-96. PubMed ID: 16080713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance.
    Villeneuve DJ; Hembruff SL; Veitch Z; Cecchetto M; Dew WA; Parissenti AM
    Breast Cancer Res Treat; 2006 Mar; 96(1):17-39. PubMed ID: 16322897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin D, tamoxifen and beta-estradiol modulate breast cancer cell growth and interleukin-6 and metalloproteinase-2 production in three-dimensional co-cultures of tumor cell spheroids with endothelium.
    Paduch R; Kandefer-Szerszeń M
    Cell Biol Toxicol; 2005; 21(5-6):247-56. PubMed ID: 16323060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythropoietin fails to interfere with the antiproliferative and cytotoxic effects of antitumor drugs.
    Gewirtz DA; Di X; Walker TD; Sawyer ST
    Clin Cancer Res; 2006 Apr; 12(7 Pt 1):2232-8. PubMed ID: 16609039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional culture system as a model for studying cancer cell invasion capacity and anticancer drug sensitivity.
    Doillon CJ; Gagnon E; Paradis R; Koutsilieris M
    Anticancer Res; 2004; 24(4):2169-77. PubMed ID: 15330157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.
    Prestwich GD
    Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of interleukins response to ECM-induced acquisition of drug resistance in MCF-7 cells.
    Ohbayashi M; Yasuda M; Kawakami I; Kohyama N; Kobayashi Y; Yamamoto T
    Exp Oncol; 2008 Dec; 30(4):276-82. PubMed ID: 19112424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test.
    Torisawa YS; Shiku H; Yasukawa T; Nishizawa M; Matsue T
    Biomaterials; 2005 May; 26(14):2165-72. PubMed ID: 15576192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study.
    Sterin M; Cohen JS; Mardor Y; Berman E; Ringel I
    Cancer Res; 2001 Oct; 61(20):7536-43. PubMed ID: 11606391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity.
    David L; Dulong V; Le Cerf D; Cazin L; Lamacz M; Vannier JP
    Acta Biomater; 2008 Mar; 4(2):256-63. PubMed ID: 17936097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC).
    Zietarska M; Maugard CM; Filali-Mouhim A; Alam-Fahmy M; Tonin PN; Provencher DM; Mes-Masson AM
    Mol Carcinog; 2007 Oct; 46(10):872-85. PubMed ID: 17455221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines.
    Dhiman HK; Ray AR; Panda AK
    Biomaterials; 2004 Sep; 25(21):5147-54. PubMed ID: 15109838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells.
    Kars MD; Işeri OD; Gündüz U
    Eur J Pharmacol; 2011 Apr; 657(1-3):4-9. PubMed ID: 21320484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer.
    Håkanson M; Textor M; Charnley M
    Integr Biol (Camb); 2011 Jan; 3(1):31-8. PubMed ID: 21049126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening.
    Chen MC; Gupta M; Cheung KC
    Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity of adriamycin in MGH-U1 cells grown as monolayer cultures, spheroids, and xenografts in immune-deprived mice.
    Erlichman C; Vidgen D
    Cancer Res; 1984 Nov; 44(11):5369-75. PubMed ID: 6488191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of the time-dependency of in vitro drug cytotoxicity and resistance.
    Levasseur LM; Slocum HK; Rustum YM; Greco WR
    Cancer Res; 1998 Dec; 58(24):5749-61. PubMed ID: 9865733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.