These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 18680543)
1. Climatic warming increases isoprene emission from a subarctic heath. Tiiva P; Faubert P; Michelsen A; Holopainen T; Holopainen JK; Rinnan R New Phytol; 2008; 180(4):853-63. PubMed ID: 18680543 [TBL] [Abstract][Full Text] [Related]
2. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. Faubert P; Tiiva P; Rinnan Å; Michelsen A; Holopainen JK; Rinnan R New Phytol; 2010 Jul; 187(1):199-208. PubMed ID: 20456056 [TBL] [Abstract][Full Text] [Related]
3. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223 [TBL] [Abstract][Full Text] [Related]
4. Impact of three decades of warming, increased nutrient availability, and increased cloudiness on the fluxes of greenhouse gases and biogenic volatile organic compounds in a subarctic tundra heath. Ndah FA; Michelsen A; Rinnan R; Maljanen M; Mikkonen S; Kivimäenpää M Glob Chang Biol; 2024 Jul; 30(7):e17416. PubMed ID: 38994730 [TBL] [Abstract][Full Text] [Related]
5. Warming increases isoprene emissions from an arctic fen. Lindwall F; Svendsen SS; Nielsen CS; Michelsen A; Rinnan R Sci Total Environ; 2016 May; 553():297-304. PubMed ID: 26933965 [TBL] [Abstract][Full Text] [Related]
6. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
7. Isoprene emission from a subarctic peatland under enhanced UV-B radiation. Tiiva P; Rinnan R; Faubert P; Räsänen J; Holopainen T; Kyrö E; Holopainen JK New Phytol; 2007; 176(2):346-355. PubMed ID: 17888116 [TBL] [Abstract][Full Text] [Related]
8. The future of isoprene emission from leaves, canopies and landscapes. Sharkey TD; Monson RK Plant Cell Environ; 2014 Aug; 37(8):1727-40. PubMed ID: 24471530 [TBL] [Abstract][Full Text] [Related]
9. Including the interactive effect of elevated CO₂ concentration and leaf temperature in global models of isoprene emission. Potosnak MJ Plant Cell Environ; 2014 Aug; 37(8):1723-6. PubMed ID: 24934668 [No Abstract] [Full Text] [Related]
10. Unravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface. Ciuraru R; Fine L; Pinxteren Mv; D'Anna B; Herrmann H; George C Environ Sci Technol; 2015 Nov; 49(22):13199-205. PubMed ID: 26355365 [TBL] [Abstract][Full Text] [Related]
11. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. Baggesen N; Li T; Seco R; Holst T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Jun; 27(12):2928-2944. PubMed ID: 33709612 [TBL] [Abstract][Full Text] [Related]
12. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Parker TC; Subke JA; Wookey PA Glob Chang Biol; 2015 May; 21(5):2070-81. PubMed ID: 25367088 [TBL] [Abstract][Full Text] [Related]
13. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
14. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Arneth A; Schurgers G; Hickler T; Miller PA Plant Biol (Stuttg); 2008 Jan; 10(1):150-62. PubMed ID: 17682966 [TBL] [Abstract][Full Text] [Related]
16. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth? Genard-Zielinski AC; Ormeño E; Boissard C; Fernandez C PLoS One; 2014; 9(11):e112418. PubMed ID: 25383554 [TBL] [Abstract][Full Text] [Related]
19. [Phytogenic isoprene and its ecological significance]. Cui X; Zhao G; Liu S Ying Yong Sheng Tai Xue Bao; 2002 Apr; 13(4):505-9. PubMed ID: 12222064 [TBL] [Abstract][Full Text] [Related]
20. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Feng Z; Yuan X; Fares S; Loreto F; Li P; Hoshika Y; Paoletti E Plant Cell Environ; 2019 Jun; 42(6):1939-1949. PubMed ID: 30767225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]