These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1868093)

  • 1. Electrochemical properties of the diiron core of uteroferrin and its anion complexes.
    Wang DL; Holz RC; David SS; Que L; Stankovich MT
    Biochemistry; 1991 Aug; 30(33):8187-94. PubMed ID: 1868093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electrochemistry of porcine purple acid phosphatase (uteroferrin).
    Bernhardt PV; Schenk G; Wilson GJ
    Biochemistry; 2004 Aug; 43(32):10387-92. PubMed ID: 15301537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-nuclear double resonance spectroscopic evidence for a hydroxo-bridge nucleophile involved in catalysis by a dinuclear hydrolase.
    Smoukov SK; Quaroni L; Wang X; Doan PE; Hoffman BM; Que L
    J Am Chem Soc; 2002 Mar; 124(11):2595-603. PubMed ID: 11890810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of porcine uterine fluid purple acid phosphatase with vanadate and vanadyl cation.
    Crans DC; Simone CM; Holz RC; Que L
    Biochemistry; 1992 Dec; 31(47):11731-9. PubMed ID: 1332769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended X-ray absorption fine structure studies of the anion complexes of FeZn uteroferrin.
    Wang X; Que L
    Biochemistry; 1998 May; 37(21):7813-21. PubMed ID: 9601042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of M(II) metal-substituted derivatives of pig purple acid phosphatase (uteroferrin) with phosphate.
    Twitchett MB; Schenk G; Aquino MA; Yiu DT; Lau TC; Sykes AG
    Inorg Chem; 2002 Nov; 41(22):5787-94. PubMed ID: 12401084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity.
    Nuttleman PR; Roberts RM
    J Biol Chem; 1990 Jul; 265(21):12192-9. PubMed ID: 2165054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dimanganese(III,IV) oxidation state of catalase from Thermus thermophilus: electron nuclear double resonance analysis of water and protein ligands in the active site.
    Khangulov S; Sivaraja M; Barynin VV; Dismukes GC
    Biochemistry; 1993 May; 32(18):4912-24. PubMed ID: 8387822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for nonbridged coordination of p-nitrophenyl phosphate to the dinuclear Fe(III)-M(II) center in bovine spleen purple acid phosphatase during enzymatic turnover.
    Merkx M; Pinkse MW; Averill BA
    Biochemistry; 1999 Aug; 38(31):9914-25. PubMed ID: 10433698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of phosphate with uteroferrin. Characterization of a reduced uteroferrin-phosphate complex.
    Pyrz JW; Sage JT; Debrunner PG; Que L
    J Biol Chem; 1986 Aug; 261(24):11015-20. PubMed ID: 3015951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron content and molecular weight of uteroferrin and a comparison of its iron and copper forms.
    Buhi WC; Gray WJ; Mansfield EA; Chun PW; Ducsay CA; Bazer FW; Roberts RM
    Biochim Biophys Acta; 1982 Feb; 701(1):32-8. PubMed ID: 7055585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H NMR and NOE studies of the purple acid phosphatases from porcine uterus and bovine spleen.
    Wang Z; Ming LJ; Que L; Vincent JB; Crowder MW; Averill BA
    Biochemistry; 1992 Jun; 31(23):5263-8. PubMed ID: 1606150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of perturbants on the pink (reduced) active form of uteroferrin. Phosphate-induced anaerobic oxidation.
    Antanaitis BC; Aisen P
    J Biol Chem; 1985 Jan; 260(2):751-6. PubMed ID: 2981845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical studies of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of bacteriophage lambda protein phosphatase.
    Reiter TA; Rusnak F
    Biochemistry; 2004 Jan; 43(3):782-90. PubMed ID: 14730983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on the interaction of phosphate with uteroferrin.
    Doi K; Gupta R; Aisen P
    J Biol Chem; 1987 May; 262(15):6982-5. PubMed ID: 3034875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray absorption spectroscopic studies of the FeZn derivative of uteroferrin.
    Wang X; Randall CR; True AE; Que L
    Biochemistry; 1996 Nov; 35(44):13946-54. PubMed ID: 8909292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The binding of molybdate to uteroferrin. Hyperfine interactions of the binuclear center with 95Mo, 1H, and 2H.
    Doi K; McCracken J; Peisach J; Aisen P
    J Biol Chem; 1988 Apr; 263(12):5757-63. PubMed ID: 2833515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of uteroferrin, a lysosomal acid phosphatase found in porcine uterine secretions, results in its high rate of secretion from transfected fibroblasts.
    Ling P; Roberts RM
    Biol Reprod; 1993 Dec; 49(6):1317-27. PubMed ID: 8286614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a high molecular weight stable pink form of uteroferrin from uterine secretions and allantoic fluid of pigs.
    Baumbach GA; Ketcham CM; Richardson DE; Bazer FW; Roberts RM
    J Biol Chem; 1986 Sep; 261(27):12869-78. PubMed ID: 3017991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placental transport and distribution of uteroferrin in the fetal pig.
    Renegar RH; Bazer FW; Roberts RM
    Biol Reprod; 1982 Dec; 27(5):1247-60. PubMed ID: 7159665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.