These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 18681048)
1. Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition. Garg RK; Kim SS; Hash DB; Gore JP; Fisher TS J Nanosci Nanotechnol; 2008 Jun; 8(6):3068-76. PubMed ID: 18681048 [TBL] [Abstract][Full Text] [Related]
2. Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases. Lysaght AC; Chiu WK Nanotechnology; 2008 Apr; 19(16):165607. PubMed ID: 21825651 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
4. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
5. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
6. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition. Cui L; Chen J; Yang B; Jiao T Nanoscale Res Lett; 2015 Dec; 10(1):483. PubMed ID: 26666912 [TBL] [Abstract][Full Text] [Related]
7. Growth of carbon nanotubes at low powers by impedance-matched microwave plasma enhanced chemical vapor deposition method. Chen SY; Chang LW; Peng CW; Miao HY; Lue JT J Nanosci Nanotechnol; 2005 Nov; 5(11):1887-92. PubMed ID: 16433426 [TBL] [Abstract][Full Text] [Related]
8. CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity. Brown DP; Nasibulin AG; Kauppinen EI J Nanosci Nanotechnol; 2008 Aug; 8(8):3803-19. PubMed ID: 19049135 [TBL] [Abstract][Full Text] [Related]
9. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Barnard JS; Paukner C; Koziol KK Nanoscale; 2016 Oct; 8(39):17262-17270. PubMed ID: 27714047 [TBL] [Abstract][Full Text] [Related]
10. Low Temperature Synthesis of High-Density Carbon Nanotubes on Insulating Substrate. Xiao Y; Ahmed Z; Ma Z; Zhou C; Zhang L; Chan M Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30901961 [TBL] [Abstract][Full Text] [Related]
11. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition. Yun Y; Shanov V; Tu Y; Subramaniam S; Schulz MJ J Phys Chem B; 2006 Nov; 110(47):23920-5. PubMed ID: 17125359 [TBL] [Abstract][Full Text] [Related]
12. The variation of surface contact angles according to the diameter of carbon nanotubes. Choi EC; Choi WS; Hong B J Nanosci Nanotechnol; 2009 Jun; 9(6):3805-9. PubMed ID: 19504923 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning. Ryu SW; Hwang JW; Hong SH J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627 [TBL] [Abstract][Full Text] [Related]
14. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
15. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions. In JB; Grigoropoulos CP; Chernov AA; Noy A ACS Nano; 2011 Dec; 5(12):9602-10. PubMed ID: 22070618 [TBL] [Abstract][Full Text] [Related]
16. Correlation between the Carbon Nanotube Growth Rate and Byproducts in Antenna-Type Remote Plasma Chemical Vapor Deposition Observed by Vacuum Ultraviolet Absorption Spectroscopy. Inaba M; Ochiai T; Ohara K; Kato R; Maki T; Ohashi T; Kawarada H Small; 2019 Nov; 15(48):e1901504. PubMed ID: 31348615 [TBL] [Abstract][Full Text] [Related]
17. The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock. Matsumoto N; Oshima A; Sakurai S; Yamada T; Yumura M; Hata K; Futaba DN Nanomaterials (Basel); 2015 Jul; 5(3):1200-1210. PubMed ID: 28347060 [TBL] [Abstract][Full Text] [Related]
18. Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth. Behr MJ; Mkhoyan KA; Aydil ES ACS Nano; 2010 Sep; 4(9):5087-94. PubMed ID: 20828144 [TBL] [Abstract][Full Text] [Related]
19. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Wang H; Ren ZF Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923 [TBL] [Abstract][Full Text] [Related]
20. Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms. Eveleens CA; Page AJ Nanoscale; 2017 Jan; 9(4):1727-1737. PubMed ID: 28091668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]