These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 18681578)

  • 1. Modeling of wave dispersion along cylindrical structures using the spectral method.
    Karpfinger F; Gurevich B; Bakulin A
    J Acoust Soc Am; 2008 Aug; 124(2):859-65. PubMed ID: 18681578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of axisymmetric wave modes in a poroelastic cylinder using spectral method.
    Karpfinger F; Gurevich B; Bakulin A
    J Acoust Soc Am; 2008 Oct; 124(4):EL230-5. PubMed ID: 19062791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings.
    Mu J; Rose JL
    J Acoust Soc Am; 2008 Aug; 124(2):866-74. PubMed ID: 18681579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.
    Nennig B; Perrey-Debain E; Ben Tahar M
    J Acoust Soc Am; 2010 Dec; 128(6):3308-20. PubMed ID: 21218865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
    Gandhi N; Michaels JE; Lee SJ
    J Acoust Soc Am; 2012 Sep; 132(3):1284-93. PubMed ID: 22978856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media.
    Bou Matar O; Gasmi N; Zhou H; Goueygou M; Talbi A
    J Acoust Soc Am; 2013 Mar; 133(3):1415-24. PubMed ID: 23464013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion of circumferential waves in cylindrically anisotropic layered pipes in plane strain.
    Vasudeva RY; Sudheer G; Vema AR
    J Acoust Soc Am; 2008 Jun; 123(6):4147-51. PubMed ID: 18537366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of elastic modes of propagation in helical waveguides.
    Treyssède F
    J Acoust Soc Am; 2007 Jun; 121(6):3398-408. PubMed ID: 17552691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic wave propagation in a microstructured acoustic fiber.
    Nikitov SA; Popov RS; Lisenkov IV; Kim CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1831-9. PubMed ID: 18986925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic wave field computation in multilayered nonplanar solid structures: a mesh-free semianalytical approach.
    Banerjee S; Kundu T
    J Acoust Soc Am; 2008 Mar; 123(3):1371-82. PubMed ID: 18345826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An alternative Biot's displacement formulation for porous materials.
    Dazel O; Brouard B; Depollier C; Griffiths S
    J Acoust Soc Am; 2007 Jun; 121(6):3509-16. PubMed ID: 17552703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media.
    Kiełczyński P; Szalewski M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1199-206. PubMed ID: 17571818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating the spectrum of anisotropic waveguides using a spectral method.
    Zharnikov TV; Syresin DE; Hsu CJ
    J Acoust Soc Am; 2013 Sep; 134(3):1739-53. PubMed ID: 23967909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of dispersion relations for axially symmetric guided waves in cylindrical structures by means of a spectral decomposition method.
    Höhne C; Prager J; Gravenkamp H
    Ultrasonics; 2015 Dec; 63():54-64. PubMed ID: 26126952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided wave propagation in single and double layer hollow cylinders embedded in infinite media.
    Jia H; Jing M; Joseph LR
    J Acoust Soc Am; 2011 Feb; 129(2):691-700. PubMed ID: 21361428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation.
    Jiangong Y; Bin W; Cunfu H
    Ultrasonics; 2010 Mar; 50(3):416-23. PubMed ID: 19857886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of an oscillating circuit on the radiation of transient acoustic waves by an electroelastic cylinder.
    Babaev AE; Babaev AA; Yanchevskiy IV
    J Acoust Soc Am; 2010 Apr; 127(4):2282-9. PubMed ID: 20370009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.