These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 18681715)

  • 21. Suppression of Bragg reflection glitches of a single-crystal diamond anvil cell by a polycapillary half-lens in high-pressure XAFS spectroscopy.
    Chen D; Dong J; Zhang X; Quan P; Liang Y; Hu T; Liu J; Wu X; Zhang Q; Li Y
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):243-8. PubMed ID: 23412480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toroidal diamond anvil cell for detailed measurements under extreme static pressures.
    Dewaele A; Loubeyre P; Occelli F; Marie O; Mezouar M
    Nat Commun; 2018 Jul; 9(1):2913. PubMed ID: 30046093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology.
    Pigott JS; Reaman DM; Panero WR
    Rev Sci Instrum; 2011 Nov; 82(11):115106. PubMed ID: 22129012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A confocal set-up for micro-XRF and XAFS experiments using diamond-anvil cells.
    Wilke M; Appel K; Vincze L; Schmidt C; Borchert M; Pascarelli S
    J Synchrotron Radiat; 2010 Sep; 17(5):669-75. PubMed ID: 20724788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ Hall effect measurement on diamond anvil cell under high pressure.
    Hu T; Cui X; Gao Y; Han Y; Liu C; Liu B; Liu H; Ma Y; Gao C
    Rev Sci Instrum; 2010 Nov; 81(11):115101. PubMed ID: 21133495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an energy-domain 57Fe-Mössbauer spectrometer using synchrotron radiation and its application to ultrahigh-pressure studies with a diamond anvil cell.
    Mitsui T; Hirao N; Ohishi Y; Masuda R; Nakamura Y; Enoki H; Sakaki K; Seto M
    J Synchrotron Radiat; 2009 Nov; 16(Pt 6):723-9. PubMed ID: 19844005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer.
    Tateiwa N; Haga Y; Fisk Z; Ōnuki Y
    Rev Sci Instrum; 2011 May; 82(5):053906. PubMed ID: 21639517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diamond anvil cell behavior up to 4 Mbar.
    Li B; Ji C; Yang W; Wang J; Yang K; Xu R; Liu W; Cai Z; Chen J; Mao HK
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1713-1717. PubMed ID: 29432145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of diamond under hydrostatic pressures up to 140 GPa.
    Occelli F; Loubeyre P; LeToullec R
    Nat Mater; 2003 Mar; 2(3):151-4. PubMed ID: 12612670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilities for high-pressure research with the diamond anvil cell at GSECARS.
    Shen G; Prakapenka VB; Eng PJ; Rivers ML; Sutton SR
    J Synchrotron Radiat; 2005 Sep; 12(Pt 5):642-9. PubMed ID: 16120989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell.
    Kunz M; Caldwell WA; Miyagi L; Wenk HR
    Rev Sci Instrum; 2007 Jun; 78(6):063907. PubMed ID: 17614626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure.
    Oger PM; Daniel I; Picard A
    Ann N Y Acad Sci; 2010 Feb; 1189():113-20. PubMed ID: 20233376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grain-size control in situ at high pressures and high temperatures in a diamond-anvil cell.
    Prakapenka VB; Shen G; Rivers ML; Sutton SR; Dubrovinsky L
    J Synchrotron Radiat; 2005 Sep; 12(Pt 5):560-5. PubMed ID: 16120978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell.
    Tateiwa N; Haga Y
    Rev Sci Instrum; 2009 Dec; 80(12):123901. PubMed ID: 20059148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.
    Giriat G; Wang W; Attfield JP; Huxley AD; Kamenev KV
    Rev Sci Instrum; 2010 Jul; 81(7):073905. PubMed ID: 20687740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam.
    Sakai T; Yagi T; Ohfuji H; Irifune T; Ohishi Y; Hirao N; Suzuki Y; Kuroda Y; Asakawa T; Kanemura T
    Rev Sci Instrum; 2015 Mar; 86(3):033905. PubMed ID: 25832243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryogenic gas loading in a Mao-Bell-type diamond anvil cell for high pressure-high temperature investigations.
    Sekar M; Kumar NR; Sahu PCh; Chandra Shekar NV; Subramanian N
    Rev Sci Instrum; 2008 Jul; 79(7):076103. PubMed ID: 18681740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Twin sample chamber for simultaneous comparative transport measurements in a diamond anvil cell.
    Schaeffer AM; Deemyad S
    Rev Sci Instrum; 2013 Sep; 84(9):095108. PubMed ID: 24089867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EOS calculations for hydrothermal diamond anvil cell operation.
    Presser V; Heiss M; Nickel KG
    Rev Sci Instrum; 2008 Aug; 79(8):085104. PubMed ID: 19044377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined ultrasonic elastic wave velocity and microtomography measurements at high pressures.
    Kono Y; Yamada A; Wang Y; Yu T; Inoue T
    Rev Sci Instrum; 2011 Feb; 82(2):023906. PubMed ID: 21361610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.