BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18682147)

  • 1. [Calorie restriction, oxidative stress and longevity].
    López-Torres M; Barja G
    Rev Esp Geriatr Gerontol; 2008; 43(4):252-60. PubMed ID: 18682147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection.
    Pamplona R; Barja G
    Biochim Biophys Acta; 2006; 1757(5-6):496-508. PubMed ID: 16574059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins.
    Sanz A; Caro P; Ayala V; Portero-Otin M; Pamplona R; Barja G
    FASEB J; 2006 Jun; 20(8):1064-73. PubMed ID: 16770005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction.
    Sanchez-Roman I; Barja G
    Exp Gerontol; 2013 Oct; 48(10):1030-42. PubMed ID: 23454735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans.
    López-Torres M; Barja G
    Biochim Biophys Acta; 2008 Nov; 1780(11):1337-47. PubMed ID: 18252204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?
    Barja G
    Biol Rev Camb Philos Soc; 2004 May; 79(2):235-51. PubMed ID: 15191224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity.
    Pamplona R; Barja G
    Ageing Res Rev; 2007 Oct; 6(3):189-210. PubMed ID: 17702671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation?
    Pamplona R; Barja G; Portero-Otín M
    Ann N Y Acad Sci; 2002 Apr; 959():475-90. PubMed ID: 11976221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial free radical theory of aging.
    Barja G
    Prog Mol Biol Transl Sci; 2014; 127():1-27. PubMed ID: 25149212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms linking calorie restriction and longevity.
    Merry BJ
    Int J Biochem Cell Biol; 2002 Nov; 34(11):1340-54. PubMed ID: 12200030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial free radical theory of aging: a critical view.
    Sanz A; Stefanatos RK
    Curr Aging Sci; 2008 Mar; 1(1):10-21. PubMed ID: 20021368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minireview: the role of oxidative stress in relation to caloric restriction and longevity.
    Gredilla R; Barja G
    Endocrinology; 2005 Sep; 146(9):3713-7. PubMed ID: 15919745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the mitochondrial free radical theory of aging intact?
    Sanz A; Pamplona R; Barja G
    Antioxid Redox Signal; 2006; 8(3-4):582-99. PubMed ID: 16677102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage.
    Sanz A; Gómez J; Caro P; Barja G
    J Bioenerg Biomembr; 2006 Dec; 38(5-6):327-33. PubMed ID: 17136610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radicals and aging.
    Barja G
    Trends Neurosci; 2004 Oct; 27(10):595-600. PubMed ID: 15374670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver.
    Caro P; Gómez J; López-Torres M; Sánchez I; Naudí A; Jove M; Pamplona R; Barja G
    Biogerontology; 2008 Jun; 9(3):183-96. PubMed ID: 18283555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diet and ageing: the possible relation to reactive oxygen species.
    Lindsay DG
    J Nutr Health Aging; 1999; 3(2):84-91. PubMed ID: 10885803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart.
    Gomez J; Caro P; Sanchez I; Naudi A; Jove M; Portero-Otin M; Lopez-Torres M; Pamplona R; Barja G
    J Bioenerg Biomembr; 2009 Jun; 41(3):309-21. PubMed ID: 19633937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver.
    Sanz A; Caro P; Barja G
    J Bioenerg Biomembr; 2004 Dec; 36(6):545-52. PubMed ID: 15692733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.